Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA
Supervisor(es): Rosas Caissiols, Juan Eduardo - Blas Pérez de Vida, Fernando
Resumen:
Seleccionar con buena precisión en el primer año de evaluación del rendimiento (E1) puede tener un gran impacto en la mejora de la eficiencia de un programa de mejoramiento. En este trabajo evaluamos el impacto de incorporar análisis multiambientales en la selección en etapas tempranas de evaluación en un programa de fitomejoramiento público, utilizando una estrategia de validación que contempla el momento en que se dispone de los datos fenotípicos. Se estudiaron cinco escenarios de predicción (PS) donde se predijeron valores con modelos considerando diferentes niveles de disponibilidad y agregación de datos para los análisis y la inclusión o no un término de interacción genotipo por ambiente (GE). Estudiamos el mejor PS para implementar de forma rutinaria en un programa público de fitomejoramiento considerando la partición de la varianza fenotípica del rendimiento de grano, la habilidad predictiva de los valores de cría y genéticos y el porcentaje de las líneas superiores en E1 que alcanzaron etapas de evaluación avanzadas. Propusimos una estrategia de validación efectiva y realista para la estructura de los programas de mejoramiento. Encontramos que el análisis conjunto de múltiples ensayos y ambientes resultó en una mejor estimación de los componentes de la varianza que cuando se realizaron análisis parciales, así como una alta habilidad predictiva para la selección temprana de padres y avance de líneas, con el uso de datos correspondientes a múltiples ensayos y ambientes. Otro hallazgo de este trabajo es que la inclusión de un término GE en los modelos correspondientes a escenarios de predicción no tuvo una respuesta clara y consistente en la habilidad predictiva.
2022 | |
Mejoramiento genético Selección temprana Análisis multiambientales ARROZ VARIANZA GENETICA |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41336 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523126121070592 |
---|---|
author | Scheffel Pereira, Sheila Melina |
author_facet | Scheffel Pereira, Sheila Melina |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 6eed504571858d3e58aeed5ad67e191a 489f03e71d39068f329bdec8798bce58 89acdd61dce395f49eaa93f99486a9f5 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/41336/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/41336/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/41336/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/41336/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/41336/1/ScheffelSheila.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Scheffel Pereira Sheila Melina |
dc.creator.advisor.none.fl_str_mv | Rosas Caissiols, Juan Eduardo Blas Pérez de Vida, Fernando |
dc.creator.none.fl_str_mv | Scheffel Pereira, Sheila Melina |
dc.date.accessioned.none.fl_str_mv | 2023-11-20T17:05:46Z |
dc.date.available.none.fl_str_mv | 2023-11-20T17:05:46Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | Seleccionar con buena precisión en el primer año de evaluación del rendimiento (E1) puede tener un gran impacto en la mejora de la eficiencia de un programa de mejoramiento. En este trabajo evaluamos el impacto de incorporar análisis multiambientales en la selección en etapas tempranas de evaluación en un programa de fitomejoramiento público, utilizando una estrategia de validación que contempla el momento en que se dispone de los datos fenotípicos. Se estudiaron cinco escenarios de predicción (PS) donde se predijeron valores con modelos considerando diferentes niveles de disponibilidad y agregación de datos para los análisis y la inclusión o no un término de interacción genotipo por ambiente (GE). Estudiamos el mejor PS para implementar de forma rutinaria en un programa público de fitomejoramiento considerando la partición de la varianza fenotípica del rendimiento de grano, la habilidad predictiva de los valores de cría y genéticos y el porcentaje de las líneas superiores en E1 que alcanzaron etapas de evaluación avanzadas. Propusimos una estrategia de validación efectiva y realista para la estructura de los programas de mejoramiento. Encontramos que el análisis conjunto de múltiples ensayos y ambientes resultó en una mejor estimación de los componentes de la varianza que cuando se realizaron análisis parciales, así como una alta habilidad predictiva para la selección temprana de padres y avance de líneas, con el uso de datos correspondientes a múltiples ensayos y ambientes. Otro hallazgo de este trabajo es que la inclusión de un término GE en los modelos correspondientes a escenarios de predicción no tuvo una respuesta clara y consistente en la habilidad predictiva. |
dc.description.es.fl_txt_mv | Tribunal: González, Pablo; Lado, Bettina; Castro, Ariel |
dc.format.extent.es.fl_str_mv | 68 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Scheffel Pereira, S. Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA [en línea] Tesis de maestría. Montevideo : Udelar. FA, 2022 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/41336 |
dc.language.iso.none.fl_str_mv | en es eng spa |
dc.publisher.es.fl_str_mv | Udelar. FA |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Mejoramiento genético Selección temprana Análisis multiambientales |
dc.subject.other.es.fl_str_mv | ARROZ VARIANZA GENETICA |
dc.title.none.fl_str_mv | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Tribunal: González, Pablo; Lado, Bettina; Castro, Ariel |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_d5ae99bbdb3a417054030aa61250a077 |
identifier_str_mv | Scheffel Pereira, S. Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA [en línea] Tesis de maestría. Montevideo : Udelar. FA, 2022 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng spa |
language_invalid_str_mv | en es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/41336 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Scheffel Pereira Sheila Melina2023-11-20T17:05:46Z2023-11-20T17:05:46Z2022Scheffel Pereira, S. Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA [en línea] Tesis de maestría. Montevideo : Udelar. FA, 2022https://hdl.handle.net/20.500.12008/41336Tribunal: González, Pablo; Lado, Bettina; Castro, ArielSeleccionar con buena precisión en el primer año de evaluación del rendimiento (E1) puede tener un gran impacto en la mejora de la eficiencia de un programa de mejoramiento. En este trabajo evaluamos el impacto de incorporar análisis multiambientales en la selección en etapas tempranas de evaluación en un programa de fitomejoramiento público, utilizando una estrategia de validación que contempla el momento en que se dispone de los datos fenotípicos. Se estudiaron cinco escenarios de predicción (PS) donde se predijeron valores con modelos considerando diferentes niveles de disponibilidad y agregación de datos para los análisis y la inclusión o no un término de interacción genotipo por ambiente (GE). Estudiamos el mejor PS para implementar de forma rutinaria en un programa público de fitomejoramiento considerando la partición de la varianza fenotípica del rendimiento de grano, la habilidad predictiva de los valores de cría y genéticos y el porcentaje de las líneas superiores en E1 que alcanzaron etapas de evaluación avanzadas. Propusimos una estrategia de validación efectiva y realista para la estructura de los programas de mejoramiento. Encontramos que el análisis conjunto de múltiples ensayos y ambientes resultó en una mejor estimación de los componentes de la varianza que cuando se realizaron análisis parciales, así como una alta habilidad predictiva para la selección temprana de padres y avance de líneas, con el uso de datos correspondientes a múltiples ensayos y ambientes. Otro hallazgo de este trabajo es que la inclusión de un término GE en los modelos correspondientes a escenarios de predicción no tuvo una respuesta clara y consistente en la habilidad predictiva.Submitted by Muniz Andrea (rosmeri8@hotmail.com) on 2023-11-20T16:50:17Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) ScheffelSheila.pdf: 2055427 bytes, checksum: 89acdd61dce395f49eaa93f99486a9f5 (MD5)Approved for entry into archive by Muniz Andrea (rosmeri8@hotmail.com) on 2023-11-20T17:01:45Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) ScheffelSheila.pdf: 2055427 bytes, checksum: 89acdd61dce395f49eaa93f99486a9f5 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-11-20T17:05:46Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) ScheffelSheila.pdf: 2055427 bytes, checksum: 89acdd61dce395f49eaa93f99486a9f5 (MD5) Previous issue date: 202268 p.application/pdfenesengspaUdelar. FALas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Mejoramiento genéticoSelección tempranaAnálisis multiambientalesARROZVARIANZA GENETICAEvaluación de selección temprana en el programa de mejoramiento de arroz de INIATesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaScheffel Pereira, Sheila MelinaRosas Caissiols, Juan EduardoBlas Pérez de Vida, FernandoUniversidad de la República (Uruguay). Facultad de Agronomía. Unidad de Posgrados y Educación PermanenteMagíster en Ciencias Agrarias, opción BioestadísticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41336/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/41336/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-814674http://localhost:8080/xmlui/bitstream/20.500.12008/41336/3/license_text6eed504571858d3e58aeed5ad67e191aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/41336/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALScheffelSheila.pdfScheffelSheila.pdfapplication/pdf2055427http://localhost:8080/xmlui/bitstream/20.500.12008/41336/1/ScheffelSheila.pdf89acdd61dce395f49eaa93f99486a9f5MD5120.500.12008/413362023-11-20 14:05:46.762oai:colibri.udelar.edu.uy:20.500.12008/41336VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:41:47.874398COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA Scheffel Pereira, Sheila Melina Mejoramiento genético Selección temprana Análisis multiambientales ARROZ VARIANZA GENETICA |
status_str | acceptedVersion |
title | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA |
title_full | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA |
title_fullStr | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA |
title_full_unstemmed | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA |
title_short | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA |
title_sort | Evaluación de selección temprana en el programa de mejoramiento de arroz de INIA |
topic | Mejoramiento genético Selección temprana Análisis multiambientales ARROZ VARIANZA GENETICA |
url | https://hdl.handle.net/20.500.12008/41336 |