CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.

Gómez Caram, Andrés

Supervisor(es): Larroca, Federico - Capdehourat, Germán

Resumen:

Los Sistemas de Recomendación (RS por sus siglas en inglés) están cada vez más presentes en la vida diaria de las personas. Redes sociales, plataformas de e-commerce o de streaming son solo algunas de las organizaciones que dependen de estos sistemas para recomendar contenido y productos a sus usuarios. De esta manera pueden mejorar la experiencia en línea del usuario así como también aumentar sus utilidades o inducir a los usuarios a generar y consumir más contenido mediante la captación de su atención. Al igual que en otras áreas del Aprendizaje Automático (i.e. Machine Learning, ML), como el Procesamiento de Lenguaje Natural o la Visión Artificial, los RS se vieron revolucionados por las técnicas de Aprendizaje Profundo (i.e. Deep Learning, DL), pasando de basarse en métodos clásicos como la factorización de matrices a modelos basados en redes neuronales profundas. El ML para datos en grafos también se vio sacudido por el DL, desarrollándose así las Redes Neuronales sobre Grafos (GNN por sus siglas en inglés). Estas redes se basan en los mismos principios del DL pero sus arquitecturas se deben adaptar a la forma en que se representan los datos en un grafo. El objetivo principal de este trabajo es explorar la mayor capacidad de las GNN a la hora de implementar RS para datos en grafos. Para ello se trabajó con datos de la Biblioteca Ceibal, una biblioteca digital pública para beneficiarios de Ceibal y la población en general. En particular se utilizaron los datos de los usuarios adultos con el fin de implementar RS basados en GNN sobre grafos de correlación, denominado aquí como el modelo CorrG-RS. Se formuló el problema como uno de clasificación binaria para decidir si a un usuario le gustaría determinado ítem o no y a partir de ello realizar recomendaciones. Esta forma de modelar el problema resulta de interés por lo novedoso respecto a la literatura consultada y a la mayor variedad de métricas disponibles a la hora de evaluar los RS. Con ese fin se implementaron las aquí llamadas métricas tradicionales y métricas alternativas. Las primeras capaces de evaluar aspectos más bien objetivos de los resultados mientras que las segundas hacen lo propio en rasgos más bien subjetivos. Luego de entrenados, estos modelos fueron comparados con otros basados en métodos clásicos y en GNN sobre grafos de conocimiento. Se encontró que CorrG-RS es capaz de competir con ambas clases de métodos, teniendo como ventaja un buen desempeño computacional comparado con su par basado en grafos de conocimiento. También este modelo demostró las mejoras que puede introducir la fácil incorporación de atributos de los ítems a los entrenamientos, sin necesidad de llevar a cabo grandes procesamientos manuales de estos. Ambas características de CorrG-RS son prometedoras de cara a un futuro donde cada vez se tengan más fuentes de datos y la necesidad de integrarlos en un mismo sistema de recomendación.


Detalles Bibliográficos
2022
Sistemas de recomendación
Aprendizaje automático
Biblioteca
Grafos
Aprendizaje profundo
Redes neuronales sobre grafos
Graph signal processing
Ceibal
Biblioteca país
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/37365
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523179638292480
author Gómez Caram, Andrés
author_facet Gómez Caram, Andrés
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
812b7ddb082a4012be429a995ce636a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/37365/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/37365/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/37365/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/37365/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/37365/1/G%C3%B322.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Gómez Caram Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Larroca, Federico
Capdehourat, Germán
dc.creator.none.fl_str_mv Gómez Caram, Andrés
dc.date.accessioned.none.fl_str_mv 2023-06-01T19:15:18Z
dc.date.available.none.fl_str_mv 2023-06-01T19:15:18Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Los Sistemas de Recomendación (RS por sus siglas en inglés) están cada vez más presentes en la vida diaria de las personas. Redes sociales, plataformas de e-commerce o de streaming son solo algunas de las organizaciones que dependen de estos sistemas para recomendar contenido y productos a sus usuarios. De esta manera pueden mejorar la experiencia en línea del usuario así como también aumentar sus utilidades o inducir a los usuarios a generar y consumir más contenido mediante la captación de su atención. Al igual que en otras áreas del Aprendizaje Automático (i.e. Machine Learning, ML), como el Procesamiento de Lenguaje Natural o la Visión Artificial, los RS se vieron revolucionados por las técnicas de Aprendizaje Profundo (i.e. Deep Learning, DL), pasando de basarse en métodos clásicos como la factorización de matrices a modelos basados en redes neuronales profundas. El ML para datos en grafos también se vio sacudido por el DL, desarrollándose así las Redes Neuronales sobre Grafos (GNN por sus siglas en inglés). Estas redes se basan en los mismos principios del DL pero sus arquitecturas se deben adaptar a la forma en que se representan los datos en un grafo. El objetivo principal de este trabajo es explorar la mayor capacidad de las GNN a la hora de implementar RS para datos en grafos. Para ello se trabajó con datos de la Biblioteca Ceibal, una biblioteca digital pública para beneficiarios de Ceibal y la población en general. En particular se utilizaron los datos de los usuarios adultos con el fin de implementar RS basados en GNN sobre grafos de correlación, denominado aquí como el modelo CorrG-RS. Se formuló el problema como uno de clasificación binaria para decidir si a un usuario le gustaría determinado ítem o no y a partir de ello realizar recomendaciones. Esta forma de modelar el problema resulta de interés por lo novedoso respecto a la literatura consultada y a la mayor variedad de métricas disponibles a la hora de evaluar los RS. Con ese fin se implementaron las aquí llamadas métricas tradicionales y métricas alternativas. Las primeras capaces de evaluar aspectos más bien objetivos de los resultados mientras que las segundas hacen lo propio en rasgos más bien subjetivos. Luego de entrenados, estos modelos fueron comparados con otros basados en métodos clásicos y en GNN sobre grafos de conocimiento. Se encontró que CorrG-RS es capaz de competir con ambas clases de métodos, teniendo como ventaja un buen desempeño computacional comparado con su par basado en grafos de conocimiento. También este modelo demostró las mejoras que puede introducir la fácil incorporación de atributos de los ítems a los entrenamientos, sin necesidad de llevar a cabo grandes procesamientos manuales de estos. Ambas características de CorrG-RS son prometedoras de cara a un futuro donde cada vez se tengan más fuentes de datos y la necesidad de integrarlos en un mismo sistema de recomendación.
dc.format.extent.es.fl_str_mv 84 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Gómez Caram, A. CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2022.
dc.identifier.issn.none.fl_str_mv 1688-2806
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/37365
dc.language.iso.none.fl_str_mv en
es
eng
spa
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Sistemas de recomendación
Aprendizaje automático
Biblioteca
Grafos
Aprendizaje profundo
Redes neuronales sobre grafos
Graph signal processing
Ceibal
Biblioteca país
dc.title.none.fl_str_mv CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Los Sistemas de Recomendación (RS por sus siglas en inglés) están cada vez más presentes en la vida diaria de las personas. Redes sociales, plataformas de e-commerce o de streaming son solo algunas de las organizaciones que dependen de estos sistemas para recomendar contenido y productos a sus usuarios. De esta manera pueden mejorar la experiencia en línea del usuario así como también aumentar sus utilidades o inducir a los usuarios a generar y consumir más contenido mediante la captación de su atención. Al igual que en otras áreas del Aprendizaje Automático (i.e. Machine Learning, ML), como el Procesamiento de Lenguaje Natural o la Visión Artificial, los RS se vieron revolucionados por las técnicas de Aprendizaje Profundo (i.e. Deep Learning, DL), pasando de basarse en métodos clásicos como la factorización de matrices a modelos basados en redes neuronales profundas. El ML para datos en grafos también se vio sacudido por el DL, desarrollándose así las Redes Neuronales sobre Grafos (GNN por sus siglas en inglés). Estas redes se basan en los mismos principios del DL pero sus arquitecturas se deben adaptar a la forma en que se representan los datos en un grafo. El objetivo principal de este trabajo es explorar la mayor capacidad de las GNN a la hora de implementar RS para datos en grafos. Para ello se trabajó con datos de la Biblioteca Ceibal, una biblioteca digital pública para beneficiarios de Ceibal y la población en general. En particular se utilizaron los datos de los usuarios adultos con el fin de implementar RS basados en GNN sobre grafos de correlación, denominado aquí como el modelo CorrG-RS. Se formuló el problema como uno de clasificación binaria para decidir si a un usuario le gustaría determinado ítem o no y a partir de ello realizar recomendaciones. Esta forma de modelar el problema resulta de interés por lo novedoso respecto a la literatura consultada y a la mayor variedad de métricas disponibles a la hora de evaluar los RS. Con ese fin se implementaron las aquí llamadas métricas tradicionales y métricas alternativas. Las primeras capaces de evaluar aspectos más bien objetivos de los resultados mientras que las segundas hacen lo propio en rasgos más bien subjetivos. Luego de entrenados, estos modelos fueron comparados con otros basados en métodos clásicos y en GNN sobre grafos de conocimiento. Se encontró que CorrG-RS es capaz de competir con ambas clases de métodos, teniendo como ventaja un buen desempeño computacional comparado con su par basado en grafos de conocimiento. También este modelo demostró las mejoras que puede introducir la fácil incorporación de atributos de los ítems a los entrenamientos, sin necesidad de llevar a cabo grandes procesamientos manuales de estos. Ambas características de CorrG-RS son prometedoras de cara a un futuro donde cada vez se tengan más fuentes de datos y la necesidad de integrarlos en un mismo sistema de recomendación.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_d50c22fc1657696f246fe9117d920ded
identifier_str_mv Gómez Caram, A. CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2022.
1688-2806
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
spa
language_invalid_str_mv en
es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/37365
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Gómez Caram Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-06-01T19:15:18Z2023-06-01T19:15:18Z2022Gómez Caram, A. CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2022.1688-2806https://hdl.handle.net/20.500.12008/37365Los Sistemas de Recomendación (RS por sus siglas en inglés) están cada vez más presentes en la vida diaria de las personas. Redes sociales, plataformas de e-commerce o de streaming son solo algunas de las organizaciones que dependen de estos sistemas para recomendar contenido y productos a sus usuarios. De esta manera pueden mejorar la experiencia en línea del usuario así como también aumentar sus utilidades o inducir a los usuarios a generar y consumir más contenido mediante la captación de su atención. Al igual que en otras áreas del Aprendizaje Automático (i.e. Machine Learning, ML), como el Procesamiento de Lenguaje Natural o la Visión Artificial, los RS se vieron revolucionados por las técnicas de Aprendizaje Profundo (i.e. Deep Learning, DL), pasando de basarse en métodos clásicos como la factorización de matrices a modelos basados en redes neuronales profundas. El ML para datos en grafos también se vio sacudido por el DL, desarrollándose así las Redes Neuronales sobre Grafos (GNN por sus siglas en inglés). Estas redes se basan en los mismos principios del DL pero sus arquitecturas se deben adaptar a la forma en que se representan los datos en un grafo. El objetivo principal de este trabajo es explorar la mayor capacidad de las GNN a la hora de implementar RS para datos en grafos. Para ello se trabajó con datos de la Biblioteca Ceibal, una biblioteca digital pública para beneficiarios de Ceibal y la población en general. En particular se utilizaron los datos de los usuarios adultos con el fin de implementar RS basados en GNN sobre grafos de correlación, denominado aquí como el modelo CorrG-RS. Se formuló el problema como uno de clasificación binaria para decidir si a un usuario le gustaría determinado ítem o no y a partir de ello realizar recomendaciones. Esta forma de modelar el problema resulta de interés por lo novedoso respecto a la literatura consultada y a la mayor variedad de métricas disponibles a la hora de evaluar los RS. Con ese fin se implementaron las aquí llamadas métricas tradicionales y métricas alternativas. Las primeras capaces de evaluar aspectos más bien objetivos de los resultados mientras que las segundas hacen lo propio en rasgos más bien subjetivos. Luego de entrenados, estos modelos fueron comparados con otros basados en métodos clásicos y en GNN sobre grafos de conocimiento. Se encontró que CorrG-RS es capaz de competir con ambas clases de métodos, teniendo como ventaja un buen desempeño computacional comparado con su par basado en grafos de conocimiento. También este modelo demostró las mejoras que puede introducir la fácil incorporación de atributos de los ítems a los entrenamientos, sin necesidad de llevar a cabo grandes procesamientos manuales de estos. Ambas características de CorrG-RS son prometedoras de cara a un futuro donde cada vez se tengan más fuentes de datos y la necesidad de integrarlos en un mismo sistema de recomendación.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-06-01T18:22:18Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Gó22.pdf: 1923157 bytes, checksum: 812b7ddb082a4012be429a995ce636a7 (MD5)Approved for entry into archive by Berón Cecilia (cberon@fing.edu.uy) on 2023-06-01T19:11:02Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Gó22.pdf: 1923157 bytes, checksum: 812b7ddb082a4012be429a995ce636a7 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-06-01T19:15:18Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Gó22.pdf: 1923157 bytes, checksum: 812b7ddb082a4012be429a995ce636a7 (MD5) Previous issue date: 202284 p.application/pdfenesengspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Sistemas de recomendaciónAprendizaje automáticoBibliotecaGrafosAprendizaje profundoRedes neuronales sobre grafosGraph signal processingCeibalBiblioteca paísCorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.Tesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGómez Caram, AndrésLarroca, FedericoCapdehourat, GermánUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería EléctricaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/37365/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/37365/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/37365/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/37365/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGó22.pdfGó22.pdfapplication/pdf1923157http://localhost:8080/xmlui/bitstream/20.500.12008/37365/1/G%C3%B322.pdf812b7ddb082a4012be429a995ce636a7MD5120.500.12008/373652023-12-11 12:31:48.414oai:colibri.udelar.edu.uy:20.500.12008/37365VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:19.160058COLIBRI - Universidad de la Repúblicafalse
spellingShingle CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
Gómez Caram, Andrés
Sistemas de recomendación
Aprendizaje automático
Biblioteca
Grafos
Aprendizaje profundo
Redes neuronales sobre grafos
Graph signal processing
Ceibal
Biblioteca país
status_str acceptedVersion
title CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
title_full CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
title_fullStr CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
title_full_unstemmed CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
title_short CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
title_sort CorrG-RS : sistemas de recomendación basados en redes neuronales sobre grafos de correlación.
topic Sistemas de recomendación
Aprendizaje automático
Biblioteca
Grafos
Aprendizaje profundo
Redes neuronales sobre grafos
Graph signal processing
Ceibal
Biblioteca país
url https://hdl.handle.net/20.500.12008/37365