Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis

Davoine, Federico - Curti, Sebastián - Monzón, Pablo

Resumen:

Mesencephalic trigeminal (MesV) cells are sensory neurons involved in the brainstem circuitry that generates and controls orofacial activities [1]. Recently we have showed that these neurons are electrically coupled through somato-somatic Cx36 containing gap junctions, forming small networks of strongly coupled cells [2]. Frequency transfer analysis of these contacts in which coupling strength is estimated by means of frequency modulated sine waves (ZAP), demonstrate that these contacts do not behave as simple low pass filters. In fact, transmission of high frequencies is amplified, indicating that coupling of signals with high frequency content, like action potentials, might be relatively stronger. Moreover, this frequency transfer characteristics rely on active currents of the non-synaptic membrane, particularly on a persistent sodium current (INaP) and an A type potassium current (IA), in combination with the passive properties [2]. These characteristics promotes strong and precise synchronization of the activity of coupled cells, providing a mechanism for coincidence detection and lateral excitation among these neurons, possibly with functional consequences for the organization and control of orofacial behaviors. In an attempt to generate a model of a network of electrically coupled MesV neurons that reproduce these behaviors, as critical as the subthreshold active mechanisms responsible for the frequency selectivity of these contacts (i.e. INaP and IA currents), is the waveform of the action potentials of these cells characterized by its high amplitude and short duration, with almost no after hyperpolarization and small interspike intervals. Despite the fact that those subthreshold mechanisms have been thoroughly studied [3,4], kinetic data of membrane currents responsible for spike generation is lacking. We developed a model of the sodium currents based on experimental data from whole cell voltage clamp recordings obtained in slices of the rat brainstem following standard procedures [2]. Based on these experimental results, we have developed a state-space model of sodium currents (transient, persistent and resurgent) [5], that was able to fit our recordings from MesV neurons. Model parameters are voltage-dependent in a non-linear manner. In order to find them, for each voltage step, state-space model was formulated as a linear ordinary equation system. Using System Identification toolbox of Matlab, states were predicted using a linear state estimator. The optimal parameters were found by minimizing the error between the prediction of the open state and the experimental data [6]. Then, we derived the explicit variational equations for the sensitivity of the model with respect of the parameters, solving them with XPP. NEURON simulations of a single compartment MesV neuron model confirmed that the proposed model of sodium currents is able to explain the fast dynamics of action potentials. In fact, modeling results showed that INaT present a voltage dependent fast inactivation process that is the main contributor to the action potential repolarization and hence of is waveform, determining its frequency content of the spikes and its ability to pass through electrical contacts between these cells


Detalles Bibliográficos
2013
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41756
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522938588495872
author Davoine, Federico
author2 Curti, Sebastián
Monzón, Pablo
author2_role author
author
author_facet Davoine, Federico
Curti, Sebastián
Monzón, Pablo
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
c8c15bc235cc7b6dcffad9032cc012fe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/41756/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/41756/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/41756/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/41756/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/41756/1/DCM13.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Davoine, Federico
Curti, Sebastián
Monzón, Pablo
dc.date.accessioned.none.fl_str_mv 2023-12-11T19:57:37Z
dc.date.available.none.fl_str_mv 2023-12-11T19:57:37Z
dc.date.issued.es.fl_str_mv 2013
dc.date.submitted.es.fl_str_mv 20231211
dc.description.abstract.none.fl_txt_mv Mesencephalic trigeminal (MesV) cells are sensory neurons involved in the brainstem circuitry that generates and controls orofacial activities [1]. Recently we have showed that these neurons are electrically coupled through somato-somatic Cx36 containing gap junctions, forming small networks of strongly coupled cells [2]. Frequency transfer analysis of these contacts in which coupling strength is estimated by means of frequency modulated sine waves (ZAP), demonstrate that these contacts do not behave as simple low pass filters. In fact, transmission of high frequencies is amplified, indicating that coupling of signals with high frequency content, like action potentials, might be relatively stronger. Moreover, this frequency transfer characteristics rely on active currents of the non-synaptic membrane, particularly on a persistent sodium current (INaP) and an A type potassium current (IA), in combination with the passive properties [2]. These characteristics promotes strong and precise synchronization of the activity of coupled cells, providing a mechanism for coincidence detection and lateral excitation among these neurons, possibly with functional consequences for the organization and control of orofacial behaviors. In an attempt to generate a model of a network of electrically coupled MesV neurons that reproduce these behaviors, as critical as the subthreshold active mechanisms responsible for the frequency selectivity of these contacts (i.e. INaP and IA currents), is the waveform of the action potentials of these cells characterized by its high amplitude and short duration, with almost no after hyperpolarization and small interspike intervals. Despite the fact that those subthreshold mechanisms have been thoroughly studied [3,4], kinetic data of membrane currents responsible for spike generation is lacking. We developed a model of the sodium currents based on experimental data from whole cell voltage clamp recordings obtained in slices of the rat brainstem following standard procedures [2]. Based on these experimental results, we have developed a state-space model of sodium currents (transient, persistent and resurgent) [5], that was able to fit our recordings from MesV neurons. Model parameters are voltage-dependent in a non-linear manner. In order to find them, for each voltage step, state-space model was formulated as a linear ordinary equation system. Using System Identification toolbox of Matlab, states were predicted using a linear state estimator. The optimal parameters were found by minimizing the error between the prediction of the open state and the experimental data [6]. Then, we derived the explicit variational equations for the sensitivity of the model with respect of the parameters, solving them with XPP. NEURON simulations of a single compartment MesV neuron model confirmed that the proposed model of sodium currents is able to explain the fast dynamics of action potentials. In fact, modeling results showed that INaT present a voltage dependent fast inactivation process that is the main contributor to the action potential repolarization and hence of is waveform, determining its frequency content of the spikes and its ability to pass through electrical contacts between these cells
dc.identifier.citation.es.fl_str_mv Davoine, Curti, S, Monzón, P. "Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis". BMC Neuroscience 2013, 14(Suppl 1):P75. doi:10.1186/1471-2202-14-S1-P75
dc.identifier.doi.es.fl_str_mv 10.1186/1471-2202-14-S1-P75
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/41756
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv BioMed Central
dc.relation.ispartof.es.fl_str_mv BMC Neuroscience 2013, 14 (Suppl 1):P75
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.title.none.fl_str_mv Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
dc.type.es.fl_str_mv Póster
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Mesencephalic trigeminal (MesV) cells are sensory neurons involved in the brainstem circuitry that generates and controls orofacial activities [1]. Recently we have showed that these neurons are electrically coupled through somato-somatic Cx36 containing gap junctions, forming small networks of strongly coupled cells [2]. Frequency transfer analysis of these contacts in which coupling strength is estimated by means of frequency modulated sine waves (ZAP), demonstrate that these contacts do not behave as simple low pass filters. In fact, transmission of high frequencies is amplified, indicating that coupling of signals with high frequency content, like action potentials, might be relatively stronger. Moreover, this frequency transfer characteristics rely on active currents of the non-synaptic membrane, particularly on a persistent sodium current (INaP) and an A type potassium current (IA), in combination with the passive properties [2]. These characteristics promotes strong and precise synchronization of the activity of coupled cells, providing a mechanism for coincidence detection and lateral excitation among these neurons, possibly with functional consequences for the organization and control of orofacial behaviors. In an attempt to generate a model of a network of electrically coupled MesV neurons that reproduce these behaviors, as critical as the subthreshold active mechanisms responsible for the frequency selectivity of these contacts (i.e. INaP and IA currents), is the waveform of the action potentials of these cells characterized by its high amplitude and short duration, with almost no after hyperpolarization and small interspike intervals. Despite the fact that those subthreshold mechanisms have been thoroughly studied [3,4], kinetic data of membrane currents responsible for spike generation is lacking. We developed a model of the sodium currents based on experimental data from whole cell voltage clamp recordings obtained in slices of the rat brainstem following standard procedures [2]. Based on these experimental results, we have developed a state-space model of sodium currents (transient, persistent and resurgent) [5], that was able to fit our recordings from MesV neurons. Model parameters are voltage-dependent in a non-linear manner. In order to find them, for each voltage step, state-space model was formulated as a linear ordinary equation system. Using System Identification toolbox of Matlab, states were predicted using a linear state estimator. The optimal parameters were found by minimizing the error between the prediction of the open state and the experimental data [6]. Then, we derived the explicit variational equations for the sensitivity of the model with respect of the parameters, solving them with XPP. NEURON simulations of a single compartment MesV neuron model confirmed that the proposed model of sodium currents is able to explain the fast dynamics of action potentials. In fact, modeling results showed that INaT present a voltage dependent fast inactivation process that is the main contributor to the action potential repolarization and hence of is waveform, determining its frequency content of the spikes and its ability to pass through electrical contacts between these cells
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_d4cd89bf3ca0968bf84f3c0a0955d0d5
identifier_str_mv Davoine, Curti, S, Monzón, P. "Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis". BMC Neuroscience 2013, 14(Suppl 1):P75. doi:10.1186/1471-2202-14-S1-P75
10.1186/1471-2202-14-S1-P75
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/41756
publishDate 2013
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling 2023-12-11T19:57:37Z2023-12-11T19:57:37Z201320231211Davoine, Curti, S, Monzón, P. "Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis". BMC Neuroscience 2013, 14(Suppl 1):P75. doi:10.1186/1471-2202-14-S1-P75https://hdl.handle.net/20.500.12008/4175610.1186/1471-2202-14-S1-P75Mesencephalic trigeminal (MesV) cells are sensory neurons involved in the brainstem circuitry that generates and controls orofacial activities [1]. Recently we have showed that these neurons are electrically coupled through somato-somatic Cx36 containing gap junctions, forming small networks of strongly coupled cells [2]. Frequency transfer analysis of these contacts in which coupling strength is estimated by means of frequency modulated sine waves (ZAP), demonstrate that these contacts do not behave as simple low pass filters. In fact, transmission of high frequencies is amplified, indicating that coupling of signals with high frequency content, like action potentials, might be relatively stronger. Moreover, this frequency transfer characteristics rely on active currents of the non-synaptic membrane, particularly on a persistent sodium current (INaP) and an A type potassium current (IA), in combination with the passive properties [2]. These characteristics promotes strong and precise synchronization of the activity of coupled cells, providing a mechanism for coincidence detection and lateral excitation among these neurons, possibly with functional consequences for the organization and control of orofacial behaviors. In an attempt to generate a model of a network of electrically coupled MesV neurons that reproduce these behaviors, as critical as the subthreshold active mechanisms responsible for the frequency selectivity of these contacts (i.e. INaP and IA currents), is the waveform of the action potentials of these cells characterized by its high amplitude and short duration, with almost no after hyperpolarization and small interspike intervals. Despite the fact that those subthreshold mechanisms have been thoroughly studied [3,4], kinetic data of membrane currents responsible for spike generation is lacking. We developed a model of the sodium currents based on experimental data from whole cell voltage clamp recordings obtained in slices of the rat brainstem following standard procedures [2]. Based on these experimental results, we have developed a state-space model of sodium currents (transient, persistent and resurgent) [5], that was able to fit our recordings from MesV neurons. Model parameters are voltage-dependent in a non-linear manner. In order to find them, for each voltage step, state-space model was formulated as a linear ordinary equation system. Using System Identification toolbox of Matlab, states were predicted using a linear state estimator. The optimal parameters were found by minimizing the error between the prediction of the open state and the experimental data [6]. Then, we derived the explicit variational equations for the sensitivity of the model with respect of the parameters, solving them with XPP. NEURON simulations of a single compartment MesV neuron model confirmed that the proposed model of sodium currents is able to explain the fast dynamics of action potentials. In fact, modeling results showed that INaT present a voltage dependent fast inactivation process that is the main contributor to the action potential repolarization and hence of is waveform, determining its frequency content of the spikes and its ability to pass through electrical contacts between these cellsMade available in DSpace on 2023-12-11T19:57:37Z (GMT). No. of bitstreams: 5 DCM13.pdf: 142765 bytes, checksum: c8c15bc235cc7b6dcffad9032cc012fe (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2013enengBioMed CentralBMC Neuroscience 2013, 14 (Suppl 1):P75Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysisPósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDavoine, FedericoCurti, SebastiánMonzón, PabloLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/41756/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/41756/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/41756/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/41756/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALDCM13.pdfapplication/pdf142765http://localhost:8080/xmlui/bitstream/20.500.12008/41756/1/DCM13.pdfc8c15bc235cc7b6dcffad9032cc012feMD5120.500.12008/417562023-12-11 16:57:37.504oai:colibri.udelar.edu.uy:20.500.12008/41756VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:39.200540COLIBRI - Universidad de la Repúblicafalse
spellingShingle Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
Davoine, Federico
status_str publishedVersion
title Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
title_full Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
title_fullStr Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
title_full_unstemmed Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
title_short Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
title_sort Modeling of sodium currents from mesencephalic trigeminal neurons by system identification and sensitivity analysis
url https://hdl.handle.net/20.500.12008/41756