Energy-efficient memories for wireless sensor networks

Steinfeld, Leonardo

Supervisor(es): Carro, Luigi

Resumen:

Wireless sensor networks (WSNs) embed computation and sensing in the physical world, enabling an unprecedented spectrum of applications in several fields of daily life, such as environmental monitoring, cattle management, elderly care, and medicine to name a few. A WSN comprises sensor nodes, which represents a new class of networked embedded computer characterized by severe resource constraints. The design of a sensor node presents many challenges, as they are expected to be small, reliable, low cost, and low power, since they are powered from batteries or harvest energy from the surrounding environment. In a sensor node, the instantaneous power of the transceiver is usually several orders of magnitude higher than processing power. Nevertheless, if average power is considered in actual applications, the communication energy is only about two times higher than the processing energy. The scaling of CMOS technology provides higher performance at lower prices, enabling more refined distributed applications with augmented local processing. The increased complexity of applications demands for enlarged memory size, which in turn increases the power drain. This scenario becomes even worse as leakage power is becoming more and more important in small feature transistor sizes. In this work the energy consumption of a sensor node is characterized, and different memory architectures were investigated to be integrated in future wireless sensor networks, showing that SRAM memories with sleep state may benefit from low duty-cycle operating system. SRAM memory with power-manageable banks puts idle banks in sleep state to further reduce the leakage power, even when the system is active. Although it is a well known technique, the energy savings limits were not exhaustively stated, nor the inuence of the power management strategy adopted. We proposed a novel and detailed model of the energy saving for uniform banks with two power management schemes: a best-oracle policy and a simple greedy policy. Our model gives valuable insight into key factors (coming from the system and the workload) that are critical for reaching the maximum achievable energy saving. Thanks to our modeling, at design time a near optimum number of banks can be estimated to reach more aggressive energy savings. The memory content allocation problem was solved by an integer linear program formulation. In the framework of this thesis, experiments were carried out for two real wireless sensor network application (based on TinyOS and ContikiOS). Results showed energy reduction close to 80% for a partition overhead of 1% with a memory of ten banks for an application under high workload. Energy saving depends on the access patterns to memory and memory parameters (such as number of banks, partitioning overhead, energy reduction of the sleep state and the wake-up energy cost). The energy saving drops for low duty-cycles. However, a very significant reduction of energy can be achieved, for example, roughly 50% for a 3% duty-cycle operation using the above memory. Finally, our findings suggest that adopting an advanced power management must be carefully evaluated, since the best-oracle is only marginally better than a greedy policy.


Las redes de sensores inalámbricas (RSI o WSN, por sus siglas en inglés) agregan computación y sensado al mundo fìsico, posibilitando un rango de aplicaciones sin precedentes en muchos campos de la vida cotidiana, como por ejemplo monitoreo ambiental, manejo de ganado, cuidado de personas adultas mayores y medicina, solo por mencionar algunas. Una RSI consta de nodos sensores, los cuales representan un nuevo tipo de computadora embebida en red, caracterizada por tener grandes restricciones de recursos. El diseño de un nodo sensor presenta muchos desafìos, ya que es necesario que sean, pequeños, confiables, de bajo costo y con muy bajo consumo de energía, ya que se alimentan de pilas o recolectan energía del medio. En un nodo sensor, la potencia instantánea del transceptor (radio) es usualmente algunos órdenes de magnitud mayor que la potencia de procesamiento. Sin embargo, la energía de comunicación es solamente dos veces mayor que la energía de procesamiento. Por otro lado, el escalado de la tecnología CMOS permite mayor performance a menores precios, posibilitando aplicaciones distribuídas más refinadas con más procesamiento local. El aumento de la complejidad de las aplicaciones requiere memorias de mayor tamaño, que a su vez aumenta el consumo de potencia. Este escenario empeora ya que las corrientes de fuga son cada vez más importantes en transistores de menor tamaño. En el presente trabajo de tesis se caracteriza el consumo de energía de un nodo sensor, y se investigan diferentes arquitecturas de memoria para ser integrado en las RSI futuras, mostrando como las memorias SRAM con un estado de sleep pueden ser convenientes en sistemas que operan con bajos ciclos de trabajo. Si además la memoria se divide en bancos que pueden ser controlados de manera independiente, se pueden poner los bancos inactivos en estado sleep, incluso cuando el sistema está activo. Aunque esta es una técnica conocida, los límites de ahorro de energía no habían sido exhaustivamente determinados, ni tampoco la influencia de la política de gestión de energía usado. Se propone un nuevo modelo detallado del ahorro de energía para bancos uniformes con dos políticas de gestión: best-oracle y greedy. Nuestro modelo proporciona información valiosa de los factores fundamentales (provenientes del sistema y la carga de trabajo) que son escenciales para alcanzar el máximo ahorro alcanzable. Gracias a nuestro modelado, en tiempo de diseño se puede estimar el número óptimo de bancos para lograr grandes ahorros de energía. El problema de asignación del código a los bancos fue resuelto usando programación lineal entera. En el contexto de esta tesis, se realizaron experimentos usando dos aplicaciones reales de redes de sensores inalámbricas (basadas en TinyOS y ContikiOS). Los resultados mostraron una reducción de energía cercano a 80% para un overhead de partición de 1% con una memoria de diez bancos para una aplicación con gran carga. El ahorro depende del patrón de acceso a memoria y los parámetros de la memoria (tales como cantidad de bancos, overhead de partición, reducción de energía del estado sleep y el costo energético de wake-up. El ahorro de energía decrece para ciclos de trabajo bajos. Sin embargo, igualmente se alcanzan ahorros de energía significativos, por ejemplo, aproximadamente 50% para ciclos de trabajo de 3% usando la memoria anterior. Finalmente, nuestros resultados sugieren que debe ser cuidadosamente evaluado el uso de políticas de gestón de energía avanzados, ya que la política best-oracle es sólo marginalmente mejor que la política greedy.


Detalles Bibliográficos
2013
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/2892
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522998812409856
author Steinfeld, Leonardo
author_facet Steinfeld, Leonardo
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
69691d065b383fc814365762d260ec09
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/2892/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/2892/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/2892/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/2892/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/2892/1/LSteinfeld_PhDThesis.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Carro, Luigi
dc.creator.none.fl_str_mv Steinfeld, Leonardo
dc.date.accessioned.none.fl_str_mv 2014-11-24T22:21:47Z
dc.date.available.none.fl_str_mv 2014-11-24T22:21:47Z
dc.date.issued.es.fl_str_mv 2013
dc.date.submitted.es.fl_str_mv 20141202
dc.description.abstract.none.fl_txt_mv Wireless sensor networks (WSNs) embed computation and sensing in the physical world, enabling an unprecedented spectrum of applications in several fields of daily life, such as environmental monitoring, cattle management, elderly care, and medicine to name a few. A WSN comprises sensor nodes, which represents a new class of networked embedded computer characterized by severe resource constraints. The design of a sensor node presents many challenges, as they are expected to be small, reliable, low cost, and low power, since they are powered from batteries or harvest energy from the surrounding environment. In a sensor node, the instantaneous power of the transceiver is usually several orders of magnitude higher than processing power. Nevertheless, if average power is considered in actual applications, the communication energy is only about two times higher than the processing energy. The scaling of CMOS technology provides higher performance at lower prices, enabling more refined distributed applications with augmented local processing. The increased complexity of applications demands for enlarged memory size, which in turn increases the power drain. This scenario becomes even worse as leakage power is becoming more and more important in small feature transistor sizes. In this work the energy consumption of a sensor node is characterized, and different memory architectures were investigated to be integrated in future wireless sensor networks, showing that SRAM memories with sleep state may benefit from low duty-cycle operating system. SRAM memory with power-manageable banks puts idle banks in sleep state to further reduce the leakage power, even when the system is active. Although it is a well known technique, the energy savings limits were not exhaustively stated, nor the inuence of the power management strategy adopted. We proposed a novel and detailed model of the energy saving for uniform banks with two power management schemes: a best-oracle policy and a simple greedy policy. Our model gives valuable insight into key factors (coming from the system and the workload) that are critical for reaching the maximum achievable energy saving. Thanks to our modeling, at design time a near optimum number of banks can be estimated to reach more aggressive energy savings. The memory content allocation problem was solved by an integer linear program formulation. In the framework of this thesis, experiments were carried out for two real wireless sensor network application (based on TinyOS and ContikiOS). Results showed energy reduction close to 80% for a partition overhead of 1% with a memory of ten banks for an application under high workload. Energy saving depends on the access patterns to memory and memory parameters (such as number of banks, partitioning overhead, energy reduction of the sleep state and the wake-up energy cost). The energy saving drops for low duty-cycles. However, a very significant reduction of energy can be achieved, for example, roughly 50% for a 3% duty-cycle operation using the above memory. Finally, our findings suggest that adopting an advanced power management must be carefully evaluated, since the best-oracle is only marginally better than a greedy policy.
Las redes de sensores inalámbricas (RSI o WSN, por sus siglas en inglés) agregan computación y sensado al mundo fìsico, posibilitando un rango de aplicaciones sin precedentes en muchos campos de la vida cotidiana, como por ejemplo monitoreo ambiental, manejo de ganado, cuidado de personas adultas mayores y medicina, solo por mencionar algunas. Una RSI consta de nodos sensores, los cuales representan un nuevo tipo de computadora embebida en red, caracterizada por tener grandes restricciones de recursos. El diseño de un nodo sensor presenta muchos desafìos, ya que es necesario que sean, pequeños, confiables, de bajo costo y con muy bajo consumo de energía, ya que se alimentan de pilas o recolectan energía del medio. En un nodo sensor, la potencia instantánea del transceptor (radio) es usualmente algunos órdenes de magnitud mayor que la potencia de procesamiento. Sin embargo, la energía de comunicación es solamente dos veces mayor que la energía de procesamiento. Por otro lado, el escalado de la tecnología CMOS permite mayor performance a menores precios, posibilitando aplicaciones distribuídas más refinadas con más procesamiento local. El aumento de la complejidad de las aplicaciones requiere memorias de mayor tamaño, que a su vez aumenta el consumo de potencia. Este escenario empeora ya que las corrientes de fuga son cada vez más importantes en transistores de menor tamaño. En el presente trabajo de tesis se caracteriza el consumo de energía de un nodo sensor, y se investigan diferentes arquitecturas de memoria para ser integrado en las RSI futuras, mostrando como las memorias SRAM con un estado de sleep pueden ser convenientes en sistemas que operan con bajos ciclos de trabajo. Si además la memoria se divide en bancos que pueden ser controlados de manera independiente, se pueden poner los bancos inactivos en estado sleep, incluso cuando el sistema está activo. Aunque esta es una técnica conocida, los límites de ahorro de energía no habían sido exhaustivamente determinados, ni tampoco la influencia de la política de gestión de energía usado. Se propone un nuevo modelo detallado del ahorro de energía para bancos uniformes con dos políticas de gestión: best-oracle y greedy. Nuestro modelo proporciona información valiosa de los factores fundamentales (provenientes del sistema y la carga de trabajo) que son escenciales para alcanzar el máximo ahorro alcanzable. Gracias a nuestro modelado, en tiempo de diseño se puede estimar el número óptimo de bancos para lograr grandes ahorros de energía. El problema de asignación del código a los bancos fue resuelto usando programación lineal entera. En el contexto de esta tesis, se realizaron experimentos usando dos aplicaciones reales de redes de sensores inalámbricas (basadas en TinyOS y ContikiOS). Los resultados mostraron una reducción de energía cercano a 80% para un overhead de partición de 1% con una memoria de diez bancos para una aplicación con gran carga. El ahorro depende del patrón de acceso a memoria y los parámetros de la memoria (tales como cantidad de bancos, overhead de partición, reducción de energía del estado sleep y el costo energético de wake-up. El ahorro de energía decrece para ciclos de trabajo bajos. Sin embargo, igualmente se alcanzan ahorros de energía significativos, por ejemplo, aproximadamente 50% para ciclos de trabajo de 3% usando la memoria anterior. Finalmente, nuestros resultados sugieren que debe ser cuidadosamente evaluado el uso de políticas de gestón de energía avanzados, ya que la política best-oracle es sólo marginalmente mejor que la política greedy.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv STEINFELD, L. "Energy-efficient memories for wireless sensor networks". Tesis de doctorado. Montevideo : Udelar.FI-IIE, 2013.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/2892
dc.language.iso.none.fl_str_mv es
spa
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.title.none.fl_str_mv Energy-efficient memories for wireless sensor networks
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Wireless sensor networks (WSNs) embed computation and sensing in the physical world, enabling an unprecedented spectrum of applications in several fields of daily life, such as environmental monitoring, cattle management, elderly care, and medicine to name a few. A WSN comprises sensor nodes, which represents a new class of networked embedded computer characterized by severe resource constraints. The design of a sensor node presents many challenges, as they are expected to be small, reliable, low cost, and low power, since they are powered from batteries or harvest energy from the surrounding environment. In a sensor node, the instantaneous power of the transceiver is usually several orders of magnitude higher than processing power. Nevertheless, if average power is considered in actual applications, the communication energy is only about two times higher than the processing energy. The scaling of CMOS technology provides higher performance at lower prices, enabling more refined distributed applications with augmented local processing. The increased complexity of applications demands for enlarged memory size, which in turn increases the power drain. This scenario becomes even worse as leakage power is becoming more and more important in small feature transistor sizes. In this work the energy consumption of a sensor node is characterized, and different memory architectures were investigated to be integrated in future wireless sensor networks, showing that SRAM memories with sleep state may benefit from low duty-cycle operating system. SRAM memory with power-manageable banks puts idle banks in sleep state to further reduce the leakage power, even when the system is active. Although it is a well known technique, the energy savings limits were not exhaustively stated, nor the inuence of the power management strategy adopted. We proposed a novel and detailed model of the energy saving for uniform banks with two power management schemes: a best-oracle policy and a simple greedy policy. Our model gives valuable insight into key factors (coming from the system and the workload) that are critical for reaching the maximum achievable energy saving. Thanks to our modeling, at design time a near optimum number of banks can be estimated to reach more aggressive energy savings. The memory content allocation problem was solved by an integer linear program formulation. In the framework of this thesis, experiments were carried out for two real wireless sensor network application (based on TinyOS and ContikiOS). Results showed energy reduction close to 80% for a partition overhead of 1% with a memory of ten banks for an application under high workload. Energy saving depends on the access patterns to memory and memory parameters (such as number of banks, partitioning overhead, energy reduction of the sleep state and the wake-up energy cost). The energy saving drops for low duty-cycles. However, a very significant reduction of energy can be achieved, for example, roughly 50% for a 3% duty-cycle operation using the above memory. Finally, our findings suggest that adopting an advanced power management must be carefully evaluated, since the best-oracle is only marginally better than a greedy policy.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_d34d3617e7788ce9af3bfb02c565d494
identifier_str_mv STEINFELD, L. "Energy-efficient memories for wireless sensor networks". Tesis de doctorado. Montevideo : Udelar.FI-IIE, 2013.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/2892
publishDate 2013
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling 2014-11-24T22:21:47Z2014-11-24T22:21:47Z201320141202STEINFELD, L. "Energy-efficient memories for wireless sensor networks". Tesis de doctorado. Montevideo : Udelar.FI-IIE, 2013.http://hdl.handle.net/20.500.12008/2892Wireless sensor networks (WSNs) embed computation and sensing in the physical world, enabling an unprecedented spectrum of applications in several fields of daily life, such as environmental monitoring, cattle management, elderly care, and medicine to name a few. A WSN comprises sensor nodes, which represents a new class of networked embedded computer characterized by severe resource constraints. The design of a sensor node presents many challenges, as they are expected to be small, reliable, low cost, and low power, since they are powered from batteries or harvest energy from the surrounding environment. In a sensor node, the instantaneous power of the transceiver is usually several orders of magnitude higher than processing power. Nevertheless, if average power is considered in actual applications, the communication energy is only about two times higher than the processing energy. The scaling of CMOS technology provides higher performance at lower prices, enabling more refined distributed applications with augmented local processing. The increased complexity of applications demands for enlarged memory size, which in turn increases the power drain. This scenario becomes even worse as leakage power is becoming more and more important in small feature transistor sizes. In this work the energy consumption of a sensor node is characterized, and different memory architectures were investigated to be integrated in future wireless sensor networks, showing that SRAM memories with sleep state may benefit from low duty-cycle operating system. SRAM memory with power-manageable banks puts idle banks in sleep state to further reduce the leakage power, even when the system is active. Although it is a well known technique, the energy savings limits were not exhaustively stated, nor the inuence of the power management strategy adopted. We proposed a novel and detailed model of the energy saving for uniform banks with two power management schemes: a best-oracle policy and a simple greedy policy. Our model gives valuable insight into key factors (coming from the system and the workload) that are critical for reaching the maximum achievable energy saving. Thanks to our modeling, at design time a near optimum number of banks can be estimated to reach more aggressive energy savings. The memory content allocation problem was solved by an integer linear program formulation. In the framework of this thesis, experiments were carried out for two real wireless sensor network application (based on TinyOS and ContikiOS). Results showed energy reduction close to 80% for a partition overhead of 1% with a memory of ten banks for an application under high workload. Energy saving depends on the access patterns to memory and memory parameters (such as number of banks, partitioning overhead, energy reduction of the sleep state and the wake-up energy cost). The energy saving drops for low duty-cycles. However, a very significant reduction of energy can be achieved, for example, roughly 50% for a 3% duty-cycle operation using the above memory. Finally, our findings suggest that adopting an advanced power management must be carefully evaluated, since the best-oracle is only marginally better than a greedy policy.Las redes de sensores inalámbricas (RSI o WSN, por sus siglas en inglés) agregan computación y sensado al mundo fìsico, posibilitando un rango de aplicaciones sin precedentes en muchos campos de la vida cotidiana, como por ejemplo monitoreo ambiental, manejo de ganado, cuidado de personas adultas mayores y medicina, solo por mencionar algunas. Una RSI consta de nodos sensores, los cuales representan un nuevo tipo de computadora embebida en red, caracterizada por tener grandes restricciones de recursos. El diseño de un nodo sensor presenta muchos desafìos, ya que es necesario que sean, pequeños, confiables, de bajo costo y con muy bajo consumo de energía, ya que se alimentan de pilas o recolectan energía del medio. En un nodo sensor, la potencia instantánea del transceptor (radio) es usualmente algunos órdenes de magnitud mayor que la potencia de procesamiento. Sin embargo, la energía de comunicación es solamente dos veces mayor que la energía de procesamiento. Por otro lado, el escalado de la tecnología CMOS permite mayor performance a menores precios, posibilitando aplicaciones distribuídas más refinadas con más procesamiento local. El aumento de la complejidad de las aplicaciones requiere memorias de mayor tamaño, que a su vez aumenta el consumo de potencia. Este escenario empeora ya que las corrientes de fuga son cada vez más importantes en transistores de menor tamaño. En el presente trabajo de tesis se caracteriza el consumo de energía de un nodo sensor, y se investigan diferentes arquitecturas de memoria para ser integrado en las RSI futuras, mostrando como las memorias SRAM con un estado de sleep pueden ser convenientes en sistemas que operan con bajos ciclos de trabajo. Si además la memoria se divide en bancos que pueden ser controlados de manera independiente, se pueden poner los bancos inactivos en estado sleep, incluso cuando el sistema está activo. Aunque esta es una técnica conocida, los límites de ahorro de energía no habían sido exhaustivamente determinados, ni tampoco la influencia de la política de gestión de energía usado. Se propone un nuevo modelo detallado del ahorro de energía para bancos uniformes con dos políticas de gestión: best-oracle y greedy. Nuestro modelo proporciona información valiosa de los factores fundamentales (provenientes del sistema y la carga de trabajo) que son escenciales para alcanzar el máximo ahorro alcanzable. Gracias a nuestro modelado, en tiempo de diseño se puede estimar el número óptimo de bancos para lograr grandes ahorros de energía. El problema de asignación del código a los bancos fue resuelto usando programación lineal entera. En el contexto de esta tesis, se realizaron experimentos usando dos aplicaciones reales de redes de sensores inalámbricas (basadas en TinyOS y ContikiOS). Los resultados mostraron una reducción de energía cercano a 80% para un overhead de partición de 1% con una memoria de diez bancos para una aplicación con gran carga. El ahorro depende del patrón de acceso a memoria y los parámetros de la memoria (tales como cantidad de bancos, overhead de partición, reducción de energía del estado sleep y el costo energético de wake-up. El ahorro de energía decrece para ciclos de trabajo bajos. Sin embargo, igualmente se alcanzan ahorros de energía significativos, por ejemplo, aproximadamente 50% para ciclos de trabajo de 3% usando la memoria anterior. Finalmente, nuestros resultados sugieren que debe ser cuidadosamente evaluado el uso de políticas de gestón de energía avanzados, ya que la política best-oracle es sólo marginalmente mejor que la política greedy.Made available in DSpace on 2014-11-24T22:21:47Z (GMT). No. of bitstreams: 5 LSteinfeld_PhDThesis.pdf: 1525797 bytes, checksum: 69691d065b383fc814365762d260ec09 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2013application/pdfesspaLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Energy-efficient memories for wireless sensor networksTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaSteinfeld, LeonardoCarro, LuigiUniversidad de la Republica (Uruguay). Facultad de IngenieríaDoctor en Ingeniería EléctricaElectrónicaMicroelectrónicaLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/2892/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/2892/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/2892/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/2892/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALLSteinfeld_PhDThesis.pdfapplication/pdf1525797http://localhost:8080/xmlui/bitstream/20.500.12008/2892/1/LSteinfeld_PhDThesis.pdf69691d065b383fc814365762d260ec09MD5120.500.12008/28922024-07-25 16:04:41.164oai:colibri.udelar.edu.uy:20.500.12008/2892VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:05.135971COLIBRI - Universidad de la Repúblicafalse
spellingShingle Energy-efficient memories for wireless sensor networks
Steinfeld, Leonardo
status_str acceptedVersion
title Energy-efficient memories for wireless sensor networks
title_full Energy-efficient memories for wireless sensor networks
title_fullStr Energy-efficient memories for wireless sensor networks
title_full_unstemmed Energy-efficient memories for wireless sensor networks
title_short Energy-efficient memories for wireless sensor networks
title_sort Energy-efficient memories for wireless sensor networks
url http://hdl.handle.net/20.500.12008/2892