Identificación automática de tópicos para el Observatorio de Medios del Uruguay

Carballal, Francisco - Mauriz, Juan

Supervisor(es): Moncecchi, Guillermo - Prada, Juan José

Resumen:

Los medios de comunicación tienen un gran impacto sobre la determinación de los temas que la gente debate diariamente y cómo los interpreta. Es pertinente que se realicen investigaciones sistemáticas sobre la cobertura realizada por los medios de comunicación sobre diferentes temas y las prácticas discursivas utilizadas. Para cumplir este fin surge el Observatorio de Medios del Uruguay (OMU), como un proyecto llevado adelante por la Facultad de Información y Comunicación con apoyo de la Facultad de Ingeniería, ambas de la Universidad de la República. El presente trabajo se enmarca en el OMU, con el objetivo de aportar una solución automatizada a alguna de las tareas involucradas en el referido proyecto. En base a reuniones realizadas con su equipo, se decidió que el problema a resolver sea la detección automática de temas. Dentro del Procesamiento de Lenguaje Natural, la detección automática de temas se denomina Modelado de Tópicos. Es un problema de aprendizaje automático no supervisado, en el que se debe determinar cuáles son los tópicos, en lugar de disponer de categorías predefinidas y limitarse a clasificar noticias. La metodología más utilizada para abordarlo es Latent Dirichlet Allocation (LDA). En este trabajo se utilizó una variación reciente, denominada embedded topic modeling (ETM), que enriquece LDA con el uso de word embeddings. Se implementó en python una aplicación web que permite entrenar y utilizar modelos de ETM. Se puede inferir los tópicos presentes en un corpus de noticias y luego clasificar automáticamente otras noticias que se ingresen desde la interfaz web. Se evaluaron modelos de ETM utilizando un corpus de 20.000 noticias pertenecientes a La Diaria, mediante experimentos cualitativos y cuantitativos. Cualitativamente, los resultados son satisfactorios y se observan similitudes con lo reportado por los autores de la metodología, particularmente en la robustez frente a palabras que no agregan significado o contenido específico (como artículos, preposiciones y algunas palabras comunes). Cuantitativamente, utilizando métricas de desempeño se pudo determinar la cantidad óptima de tópicos para el corpus.


Detalles Bibliográficos
2022
Procesamiento de lenguaje natural
Aprendizaje automático
Modelado de tópicos
Latent Dirichlet Allocation
Word embeddings
Análisis de noticias
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/35146
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)

Resultados similares