Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations

Testuri, Carlos E.

Supervisor(es): Albornoz, Víctor M. - Cancela, Héctor

Resumen:

A stochastic capacitated discrete procurement problem with lead times, cancellation and postponement is addressed. The problem determines the expected cost minimization of satisfying the uncertain demand of a product during a discrete time planning horizon. The supply of the product is made through the purchase of optional distinguishable orders of fixed size with lead time. Due to the uncertainty of demand, corrective actions, such as order cancellation and postponement, may be taken with associated costs and time limits. The problem is modeled as an extension of a capacitated discrete lot-sizing problem with uncertain demand and lead times through a multistage stochastic mixed-integer programming approach. To improve the resolution of the model by tightening its formulation, valid inequalities are generated based on conventional inequalities. Subsets of approximately non dominated valid inequalities are determined heuristically. A procedure to tighten an upgraded formulation based on a known scheme of pairing of inequalities is proposed. Computational experiments are performed for several instances with different uncertainty information structure. The experimental results allow to conclude that the inclusion of subsets of the generated valid inequalities enable a more efficient resolution of the model.


Detalles Bibliográficos
2020
Stochastic lot-sizing
Multistage stochastic mixed-integer programming
Valid inequality
Lead time
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/23432
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182121320448
author Testuri, Carlos E.
author_facet Testuri, Carlos E.
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
b7a1f0ecb0a08331e6e1cffe9455730a
9da0b6dfac957114c6a7714714b86306
55cce0b4643cf59d53598d97d8dec621
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/23432/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/23432/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/23432/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/23432/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/23432/1/TES20.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Testuri Carlos E.
dc.creator.advisor.none.fl_str_mv Albornoz, Víctor M.
Cancela, Héctor
dc.creator.none.fl_str_mv Testuri, Carlos E.
dc.date.accessioned.none.fl_str_mv 2020-03-23T21:59:51Z
dc.date.available.none.fl_str_mv 2020-03-23T21:59:51Z
dc.date.issued.none.fl_str_mv 2020
dc.description.abstract.none.fl_txt_mv A stochastic capacitated discrete procurement problem with lead times, cancellation and postponement is addressed. The problem determines the expected cost minimization of satisfying the uncertain demand of a product during a discrete time planning horizon. The supply of the product is made through the purchase of optional distinguishable orders of fixed size with lead time. Due to the uncertainty of demand, corrective actions, such as order cancellation and postponement, may be taken with associated costs and time limits. The problem is modeled as an extension of a capacitated discrete lot-sizing problem with uncertain demand and lead times through a multistage stochastic mixed-integer programming approach. To improve the resolution of the model by tightening its formulation, valid inequalities are generated based on conventional inequalities. Subsets of approximately non dominated valid inequalities are determined heuristically. A procedure to tighten an upgraded formulation based on a known scheme of pairing of inequalities is proposed. Computational experiments are performed for several instances with different uncertainty information structure. The experimental results allow to conclude that the inclusion of subsets of the generated valid inequalities enable a more efficient resolution of the model.
dc.format.extent.es.fl_str_mv 45 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Testuri, C. Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. INCO. - PEDECIBA, 2020.
dc.identifier.issn.none.fl_str_mv 1688-2776
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/23432
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Stochastic lot-sizing
Multistage stochastic mixed-integer programming
Valid inequality
Lead time
dc.title.none.fl_str_mv Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description A stochastic capacitated discrete procurement problem with lead times, cancellation and postponement is addressed. The problem determines the expected cost minimization of satisfying the uncertain demand of a product during a discrete time planning horizon. The supply of the product is made through the purchase of optional distinguishable orders of fixed size with lead time. Due to the uncertainty of demand, corrective actions, such as order cancellation and postponement, may be taken with associated costs and time limits. The problem is modeled as an extension of a capacitated discrete lot-sizing problem with uncertain demand and lead times through a multistage stochastic mixed-integer programming approach. To improve the resolution of the model by tightening its formulation, valid inequalities are generated based on conventional inequalities. Subsets of approximately non dominated valid inequalities are determined heuristically. A procedure to tighten an upgraded formulation based on a known scheme of pairing of inequalities is proposed. Computational experiments are performed for several instances with different uncertainty information structure. The experimental results allow to conclude that the inclusion of subsets of the generated valid inequalities enable a more efficient resolution of the model.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_cf850e34b76ca5b21d100ebcbd30c98c
identifier_str_mv Testuri, C. Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. INCO. - PEDECIBA, 2020.
1688-2776
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/23432
publishDate 2020
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Testuri Carlos E.2020-03-23T21:59:51Z2020-03-23T21:59:51Z2020Testuri, C. Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. INCO. - PEDECIBA, 2020.1688-2776https://hdl.handle.net/20.500.12008/23432A stochastic capacitated discrete procurement problem with lead times, cancellation and postponement is addressed. The problem determines the expected cost minimization of satisfying the uncertain demand of a product during a discrete time planning horizon. The supply of the product is made through the purchase of optional distinguishable orders of fixed size with lead time. Due to the uncertainty of demand, corrective actions, such as order cancellation and postponement, may be taken with associated costs and time limits. The problem is modeled as an extension of a capacitated discrete lot-sizing problem with uncertain demand and lead times through a multistage stochastic mixed-integer programming approach. To improve the resolution of the model by tightening its formulation, valid inequalities are generated based on conventional inequalities. Subsets of approximately non dominated valid inequalities are determined heuristically. A procedure to tighten an upgraded formulation based on a known scheme of pairing of inequalities is proposed. Computational experiments are performed for several instances with different uncertainty information structure. The experimental results allow to conclude that the inclusion of subsets of the generated valid inequalities enable a more efficient resolution of the model.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2020-03-23T20:23:42Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) TES20.pdf: 1495471 bytes, checksum: 55cce0b4643cf59d53598d97d8dec621 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-03-23T20:41:04Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) TES20.pdf: 1495471 bytes, checksum: 55cce0b4643cf59d53598d97d8dec621 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-03-23T21:59:51Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) TES20.pdf: 1495471 bytes, checksum: 55cce0b4643cf59d53598d97d8dec621 (MD5) Previous issue date: 202045 p.application/pdfenengUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Stochastic lot-sizingMultistage stochastic mixed-integer programmingValid inequalityLead timeMultistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulationsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaTesturi, Carlos E.Albornoz, Víctor M.Cancela, HéctorUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/23432/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/23432/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838418http://localhost:8080/xmlui/bitstream/20.500.12008/23432/3/license_textb7a1f0ecb0a08331e6e1cffe9455730aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/23432/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALTES20.pdfTES20.pdfapplication/pdf1495471http://localhost:8080/xmlui/bitstream/20.500.12008/23432/1/TES20.pdf55cce0b4643cf59d53598d97d8dec621MD5120.500.12008/234322020-10-28 12:53:43.891oai:colibri.udelar.edu.uy:20.500.12008/23432VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:26.647533COLIBRI - Universidad de la Repúblicafalse
spellingShingle Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
Testuri, Carlos E.
Stochastic lot-sizing
Multistage stochastic mixed-integer programming
Valid inequality
Lead time
status_str acceptedVersion
title Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
title_full Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
title_fullStr Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
title_full_unstemmed Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
title_short Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
title_sort Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
topic Stochastic lot-sizing
Multistage stochastic mixed-integer programming
Valid inequality
Lead time
url https://hdl.handle.net/20.500.12008/23432