Current efficient integrated architecture for common mode rejection sensitive neural recordings
Supervisor(es): Silveira, Fernando - Caputi, Angel
Resumen:
In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area.
2018 | |
Electrónica | |
Español | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/20202 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
_version_ | 1807523178292969472 |
---|---|
author | Oreggioni, Julián |
author_facet | Oreggioni, Julián |
author_role | author |
bitstream.checksum.fl_str_mv | 7f2e2c17ef6585de66da58d1bfa8b5e1 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 814e66fee43a5f5b136a3f1c6a69a5db |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/20202/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/20202/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/20202/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/20202/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/20202/1/Ore18.pdf |
collection | COLIBRI |
dc.creator.advisor.none.fl_str_mv | Silveira, Fernando Caputi, Angel |
dc.creator.none.fl_str_mv | Oreggioni, Julián |
dc.date.accessioned.none.fl_str_mv | 2019-02-21T20:56:44Z |
dc.date.available.none.fl_str_mv | 2019-02-21T20:56:44Z |
dc.date.issued.es.fl_str_mv | 2018 |
dc.date.submitted.es.fl_str_mv | 20190221 |
dc.description.abstract.none.fl_txt_mv | In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | OREGGIONI, J. "Current efficient integrated architecture for common mode rejection sensitive neural recordings". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018. |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/20202 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | UR. FING |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.other.es.fl_str_mv | Electrónica |
dc.title.none.fl_str_mv | Current efficient integrated architecture for common mode rejection sensitive neural recordings |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | COLIBRI_cddd6793a9c985310d59d7ecf06c401b |
identifier_str_mv | OREGGIONI, J. "Current efficient integrated architecture for common mode rejection sensitive neural recordings". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/20202 |
publishDate | 2018 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
spelling | 2019-02-21T20:56:44Z2019-02-21T20:56:44Z201820190221OREGGIONI, J. "Current efficient integrated architecture for common mode rejection sensitive neural recordings". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018.http://hdl.handle.net/20.500.12008/20202In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area.Made available in DSpace on 2019-02-21T20:56:44Z (GMT). No. of bitstreams: 5 Ore18.pdf: 11514736 bytes, checksum: 814e66fee43a5f5b136a3f1c6a69a5db (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2018application/pdfesspaUR. FINGLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)ElectrónicaCurrent efficient integrated architecture for common mode rejection sensitive neural recordingsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaOreggioni, JuliánSilveira, FernandoCaputi, AngelUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en Ingeniería EléctricaLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/20202/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/20202/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/20202/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/20202/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALOre18.pdfapplication/pdf11514736http://localhost:8080/xmlui/bitstream/20.500.12008/20202/1/Ore18.pdf814e66fee43a5f5b136a3f1c6a69a5dbMD5120.500.12008/202022019-02-21 18:21:32.479oai:colibri.udelar.edu.uy:20.500.12008/20202VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:16.283898COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Current efficient integrated architecture for common mode rejection sensitive neural recordings Oreggioni, Julián Electrónica |
status_str | acceptedVersion |
title | Current efficient integrated architecture for common mode rejection sensitive neural recordings |
title_full | Current efficient integrated architecture for common mode rejection sensitive neural recordings |
title_fullStr | Current efficient integrated architecture for common mode rejection sensitive neural recordings |
title_full_unstemmed | Current efficient integrated architecture for common mode rejection sensitive neural recordings |
title_short | Current efficient integrated architecture for common mode rejection sensitive neural recordings |
title_sort | Current efficient integrated architecture for common mode rejection sensitive neural recordings |
topic | Electrónica |
url | http://hdl.handle.net/20.500.12008/20202 |