Current efficient integrated architecture for common mode rejection sensitive neural recordings

Oreggioni, Julián

Supervisor(es): Silveira, Fernando - Caputi, Angel

Resumen:

In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area.


Detalles Bibliográficos
2018
Electrónica
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/20202
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807523178292969472
author Oreggioni, Julián
author_facet Oreggioni, Julián
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
814e66fee43a5f5b136a3f1c6a69a5db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/20202/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/20202/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/20202/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/20202/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/20202/1/Ore18.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Silveira, Fernando
Caputi, Angel
dc.creator.none.fl_str_mv Oreggioni, Julián
dc.date.accessioned.none.fl_str_mv 2019-02-21T20:56:44Z
dc.date.available.none.fl_str_mv 2019-02-21T20:56:44Z
dc.date.issued.es.fl_str_mv 2018
dc.date.submitted.es.fl_str_mv 20190221
dc.description.abstract.none.fl_txt_mv In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv OREGGIONI, J. "Current efficient integrated architecture for common mode rejection sensitive neural recordings". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/20202
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv UR. FING
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv Electrónica
dc.title.none.fl_str_mv Current efficient integrated architecture for common mode rejection sensitive neural recordings
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_cddd6793a9c985310d59d7ecf06c401b
identifier_str_mv OREGGIONI, J. "Current efficient integrated architecture for common mode rejection sensitive neural recordings". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/20202
publishDate 2018
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling 2019-02-21T20:56:44Z2019-02-21T20:56:44Z201820190221OREGGIONI, J. "Current efficient integrated architecture for common mode rejection sensitive neural recordings". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018.http://hdl.handle.net/20.500.12008/20202In the last decade we have seen a significant growth of research and potential applications of electronic circuits that interact with the nervous system, in a wide range of applications, from basic neuroscience research to medical clinic, or from the entertainment industry to transport services. The real time acquisition and analysis of brain signals, either through wearable electroencephalography (EEG) or invasive or implantable recordings, in order to perform actions (brain machine interface) or to understand aspects of brain operation, has become scientifically and technologically feasible. This thesis aims to support neural recording applications with low noise, currentefficiency and high common-mode rejection ratio (CMRR) as main features of the recording system. One emblematic example of these applications in the neuroscience domain is the weakly electric fish neural activity recording, where the interference produced by the discharge of the fish electric organ is a key factor. Another example, from the implantable devices domain, is the nerve activity recorded with cuff electrodes, where the desired signal is interfered by electromyographic potentials generated by muscles near the cuff. In these cases, the amplitude of the interfering signals, which mainly appear in common mode, is several orders of magnitude higher than the amplitude of the signals of interest. Therefore, this thesis introduces a novel integrated neural preamplifier architecture targeting CMRR sensitive neural recording applications. The architecture is presented and analyzed in depth, deriving the preamplifier transfer function and the main design equations. We present a detailed analysis of a technique for blocking the input dc component and setting the high-pass frequency without using MOS pseudo-resistors. One of the main contributions of this work is the overall architecture coupled with an efficient and simple single-stage circuit for the preamplifier main transconductor. A fully-integrated neural preamplifier, which performs well in line with the state-ofthe-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 um CMOS process. Results from measurements show that the measured gain is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 uVrms) and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated version. In addition, we present in-vivo measurements made with the proposed architecture in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier to acquire neural signals from high amplitude common mode interference in an unshielded environment. This was the first in-vivo testing of a neural recording integrated circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with our unshielded low-power battery-powered preamplifier perfectly match with those of a shielded commercially-available amplifier (ac-plugged, without power restrictions). To the best of our knowledge, the proposed preamplifier is the best option for applications that simultaneously need low noise, high CMRR and current-efficiency. Furthermore, in this thesis we applied the aforementioned architecture to bandpass biquad filters, specially but not only, to those with differential input. The new architecture provides a significant reduction in consumption (up to 30%) and/or makes it possible to block a higher level of dc at the input (up to the double, without using decoupling capacitors). Next, we applied the novel architecture to the design of the different stages of an integrated programmable analog front-end. Results from simulations shows that the gain is programmable between 57 dB and 99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 uA and the maximum equivalent input-referred noise voltage is 1.87 uVrms. The comparison between our front-end and other works in the state-of-the-art shows that our front-end presents the best results in terms of CMRR and noise, has the greatest value of gain and equals the best NEF reported. Finally, some system-level topics were addressed during this thesis, including the design and implementation of three prototypes of end-to-end wireless biopotentials recording systems based on off-the-shelf components. Developing and applying circuits, systems and methods, for synchronized largescale monitoring of neural activity, sensory images, and behavior, would produce a dynamic picture of the brain function, which is essential for understanding the brain in action. In this context, we hope that the present thesis become our first step to further contribute to this area.Made available in DSpace on 2019-02-21T20:56:44Z (GMT). No. of bitstreams: 5 Ore18.pdf: 11514736 bytes, checksum: 814e66fee43a5f5b136a3f1c6a69a5db (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2018application/pdfesspaUR. FINGLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)ElectrónicaCurrent efficient integrated architecture for common mode rejection sensitive neural recordingsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaOreggioni, JuliánSilveira, FernandoCaputi, AngelUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en Ingeniería EléctricaLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/20202/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/20202/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/20202/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/20202/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALOre18.pdfapplication/pdf11514736http://localhost:8080/xmlui/bitstream/20.500.12008/20202/1/Ore18.pdf814e66fee43a5f5b136a3f1c6a69a5dbMD5120.500.12008/202022019-02-21 18:21:32.479oai:colibri.udelar.edu.uy:20.500.12008/20202VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:16.283898COLIBRI - Universidad de la Repúblicafalse
spellingShingle Current efficient integrated architecture for common mode rejection sensitive neural recordings
Oreggioni, Julián
Electrónica
status_str acceptedVersion
title Current efficient integrated architecture for common mode rejection sensitive neural recordings
title_full Current efficient integrated architecture for common mode rejection sensitive neural recordings
title_fullStr Current efficient integrated architecture for common mode rejection sensitive neural recordings
title_full_unstemmed Current efficient integrated architecture for common mode rejection sensitive neural recordings
title_short Current efficient integrated architecture for common mode rejection sensitive neural recordings
title_sort Current efficient integrated architecture for common mode rejection sensitive neural recordings
topic Electrónica
url http://hdl.handle.net/20.500.12008/20202