Audio-based classroom activity detection for primary school lessons

Ríos, Braulio

Supervisor(es): Cancela, Pablo - Capdehourat, Germán

Resumen:

Classroom Activity Detection (CAD) is a challenging task, especially for primary school lessons, where student participation is fragmented, short, and often concurrent with teacher speech and background noise. This thesis proposes and evaluates three CAD models: two based on supervised audio classification (trained on a proprietary dataset that was annotated for this work), and one based on unsupervised diarization. These models are assessed through the visualization of the estimated label density, rather than typical CAD segment visualizations. This approach proves to be more effective in dealing with the highly fragmented segments observed in this specific use case. The main metric to compare these models is the correlation coefficient between estimated and ground-truth label densities. The density and correlation are used to evaluate the accuracy of the models in capturing the temporal distribution of the different classroom activities. Complimentary to that, another metric that is also used is the error in the total time estimated for each label (e.g., estimated Teacher Talking Time or TTT). The supervised models, based on an LSTM neural network and a decision tree classifier, achieve similar classification performance, outperforming the unsupervised diarization pipeline. Even a small amount of training data is enough for the supervised models to achieve the performance of the diarization system, and they generalize well to previously unseen voices. The unsupervised diarization model does not require training data for this particular task, but its performance is not as good as the supervised models to detect the teacher’s voice. Additionally, it cannot distinguish properly between the labels “single student” and “group work”. Overall, the supervised CAD models proposed in this thesis demonstrate promising results for primary school lessons, even with limited training data. These models could be used to develop valuable tools to support classroom observation and evaluation.


Detalles Bibliográficos
2023
Beca de Maestría ANII
Classroom activity detection
Classroom monitoring
Diarization
Audio classification
Ceibal
Edtech
Educational technology
Primary school education
LSTM
Speech processing
Machine learning
Supervised learning
Unsupervised learning
Audio processing
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/40734
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523177255927808
author Ríos, Braulio
author_facet Ríos, Braulio
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
1274339f512f00ecc522a4c5febd859e
489f03e71d39068f329bdec8798bce58
e086d5b7e6f05a2635b379271f53ab9e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/40734/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/40734/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/40734/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/40734/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/40734/1/Ri23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Ríos Braulio, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Cancela, Pablo
Capdehourat, Germán
dc.creator.none.fl_str_mv Ríos, Braulio
dc.date.accessioned.none.fl_str_mv 2023-10-19T12:14:21Z
dc.date.available.none.fl_str_mv 2023-10-19T12:14:21Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Classroom Activity Detection (CAD) is a challenging task, especially for primary school lessons, where student participation is fragmented, short, and often concurrent with teacher speech and background noise. This thesis proposes and evaluates three CAD models: two based on supervised audio classification (trained on a proprietary dataset that was annotated for this work), and one based on unsupervised diarization. These models are assessed through the visualization of the estimated label density, rather than typical CAD segment visualizations. This approach proves to be more effective in dealing with the highly fragmented segments observed in this specific use case. The main metric to compare these models is the correlation coefficient between estimated and ground-truth label densities. The density and correlation are used to evaluate the accuracy of the models in capturing the temporal distribution of the different classroom activities. Complimentary to that, another metric that is also used is the error in the total time estimated for each label (e.g., estimated Teacher Talking Time or TTT). The supervised models, based on an LSTM neural network and a decision tree classifier, achieve similar classification performance, outperforming the unsupervised diarization pipeline. Even a small amount of training data is enough for the supervised models to achieve the performance of the diarization system, and they generalize well to previously unseen voices. The unsupervised diarization model does not require training data for this particular task, but its performance is not as good as the supervised models to detect the teacher’s voice. Additionally, it cannot distinguish properly between the labels “single student” and “group work”. Overall, the supervised CAD models proposed in this thesis demonstrate promising results for primary school lessons, even with limited training data. These models could be used to develop valuable tools to support classroom observation and evaluation.
dc.description.sponsorship.none.fl_txt_mv Beca de Maestría ANII
dc.format.extent.es.fl_str_mv 100 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Ríos, B. Audio-based classroom activity detection for primary school lessons [en línea]. Tesis de maestría. Montevideo : Udelar. FI., 2023.
dc.identifier.issn.none.fl_str_mv 1688-2806
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/40734
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Classroom activity detection
Classroom monitoring
Diarization
Audio classification
Ceibal
Edtech
Educational technology
Primary school education
LSTM
Speech processing
Machine learning
Supervised learning
Unsupervised learning
Audio processing
dc.title.none.fl_str_mv Audio-based classroom activity detection for primary school lessons
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Classroom Activity Detection (CAD) is a challenging task, especially for primary school lessons, where student participation is fragmented, short, and often concurrent with teacher speech and background noise. This thesis proposes and evaluates three CAD models: two based on supervised audio classification (trained on a proprietary dataset that was annotated for this work), and one based on unsupervised diarization. These models are assessed through the visualization of the estimated label density, rather than typical CAD segment visualizations. This approach proves to be more effective in dealing with the highly fragmented segments observed in this specific use case. The main metric to compare these models is the correlation coefficient between estimated and ground-truth label densities. The density and correlation are used to evaluate the accuracy of the models in capturing the temporal distribution of the different classroom activities. Complimentary to that, another metric that is also used is the error in the total time estimated for each label (e.g., estimated Teacher Talking Time or TTT). The supervised models, based on an LSTM neural network and a decision tree classifier, achieve similar classification performance, outperforming the unsupervised diarization pipeline. Even a small amount of training data is enough for the supervised models to achieve the performance of the diarization system, and they generalize well to previously unseen voices. The unsupervised diarization model does not require training data for this particular task, but its performance is not as good as the supervised models to detect the teacher’s voice. Additionally, it cannot distinguish properly between the labels “single student” and “group work”. Overall, the supervised CAD models proposed in this thesis demonstrate promising results for primary school lessons, even with limited training data. These models could be used to develop valuable tools to support classroom observation and evaluation.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_cb95c9fdd2e956b4973aa0d5127fd464
identifier_str_mv Ríos, B. Audio-based classroom activity detection for primary school lessons [en línea]. Tesis de maestría. Montevideo : Udelar. FI., 2023.
1688-2806
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/40734
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Ríos Braulio, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-10-19T12:14:21Z2023-10-19T12:14:21Z2023Ríos, B. Audio-based classroom activity detection for primary school lessons [en línea]. Tesis de maestría. Montevideo : Udelar. FI., 2023.1688-2806https://hdl.handle.net/20.500.12008/40734Classroom Activity Detection (CAD) is a challenging task, especially for primary school lessons, where student participation is fragmented, short, and often concurrent with teacher speech and background noise. This thesis proposes and evaluates three CAD models: two based on supervised audio classification (trained on a proprietary dataset that was annotated for this work), and one based on unsupervised diarization. These models are assessed through the visualization of the estimated label density, rather than typical CAD segment visualizations. This approach proves to be more effective in dealing with the highly fragmented segments observed in this specific use case. The main metric to compare these models is the correlation coefficient between estimated and ground-truth label densities. The density and correlation are used to evaluate the accuracy of the models in capturing the temporal distribution of the different classroom activities. Complimentary to that, another metric that is also used is the error in the total time estimated for each label (e.g., estimated Teacher Talking Time or TTT). The supervised models, based on an LSTM neural network and a decision tree classifier, achieve similar classification performance, outperforming the unsupervised diarization pipeline. Even a small amount of training data is enough for the supervised models to achieve the performance of the diarization system, and they generalize well to previously unseen voices. The unsupervised diarization model does not require training data for this particular task, but its performance is not as good as the supervised models to detect the teacher’s voice. Additionally, it cannot distinguish properly between the labels “single student” and “group work”. Overall, the supervised CAD models proposed in this thesis demonstrate promising results for primary school lessons, even with limited training data. These models could be used to develop valuable tools to support classroom observation and evaluation.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-10-12T22:44:34Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) Ri23.pdf: 7477305 bytes, checksum: e086d5b7e6f05a2635b379271f53ab9e (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-10-17T17:30:45Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) Ri23.pdf: 7477305 bytes, checksum: e086d5b7e6f05a2635b379271f53ab9e (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-10-19T12:14:21Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) Ri23.pdf: 7477305 bytes, checksum: e086d5b7e6f05a2635b379271f53ab9e (MD5) Previous issue date: 2023Beca de Maestría ANII100 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Classroom activity detectionClassroom monitoringDiarizationAudio classificationCeibalEdtechEducational technologyPrimary school educationLSTMSpeech processingMachine learningSupervised learningUnsupervised learningAudio processingAudio-based classroom activity detection for primary school lessonsTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRíos, BraulioCancela, PabloCapdehourat, GermánUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ciencia de Datos y Aprendizaje AutomáticoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/40734/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/40734/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-814403http://localhost:8080/xmlui/bitstream/20.500.12008/40734/3/license_text1274339f512f00ecc522a4c5febd859eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/40734/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALRi23.pdfRi23.pdfapplication/pdf7477305http://localhost:8080/xmlui/bitstream/20.500.12008/40734/1/Ri23.pdfe086d5b7e6f05a2635b379271f53ab9eMD5120.500.12008/407342023-10-19 09:14:21.038oai:colibri.udelar.edu.uy:20.500.12008/40734VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:09.473728COLIBRI - Universidad de la Repúblicafalse
spellingShingle Audio-based classroom activity detection for primary school lessons
Ríos, Braulio
Classroom activity detection
Classroom monitoring
Diarization
Audio classification
Ceibal
Edtech
Educational technology
Primary school education
LSTM
Speech processing
Machine learning
Supervised learning
Unsupervised learning
Audio processing
status_str acceptedVersion
title Audio-based classroom activity detection for primary school lessons
title_full Audio-based classroom activity detection for primary school lessons
title_fullStr Audio-based classroom activity detection for primary school lessons
title_full_unstemmed Audio-based classroom activity detection for primary school lessons
title_short Audio-based classroom activity detection for primary school lessons
title_sort Audio-based classroom activity detection for primary school lessons
topic Classroom activity detection
Classroom monitoring
Diarization
Audio classification
Ceibal
Edtech
Educational technology
Primary school education
LSTM
Speech processing
Machine learning
Supervised learning
Unsupervised learning
Audio processing
url https://hdl.handle.net/20.500.12008/40734