Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales

de Almeida Lucas, Everton

Supervisor(es): Gutiérrez Arce, Alejandro - da Silva Camargo, Sandro

Resumen:

En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada esta realidad, y la característica fluctuante del viento en la atmósfera terrestre a escala horaria, es necesario incorporar modelos de pronósticos de energía eólica, de modo de suministrar informaciones de la generación de energía con anticipación, para que se logre hacer el despacho óptimo de energía en el sistema eléctrico. En este trabajo de tesis, se consideran los datos de generación de energía eléctrica de los parques eólicos en Uruguay, pronósticos numéricos de mesoescala referentes al mismo período de los datos de generación de los parques y el análisis del comportamiento de distintas variables atmosféricas en el período histórico de generación de energía. Con estos datos se busca optimizar los pronóosticos de energía eólica en Uruguay en base a la utilización del modelo numérico de mesoescala WRF-ARW y de redes neuronales artificiales (RNA). Se evalúan ocho modelos de pronóstico de energía eólica, basados en modelos híbridos, con el uso del modelo numérico de mesoescala WRF-ARW junto a redes neuronales artificiales (WRF-RNA) y modelo numérico WRFARW junto a regresiones lineales (WRF-RL). Los resultados fueron evaluados para un total de 31 parques eólicos (1267,4 Megawatts (MW)) y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA, con datos de velocidad del viento sin corrección por análisis cluster, presentando un error medio absoluto de aproximadamente 17% considerando pronósticos individuales para cada parque eólico. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran los valores de sesgo (bias) más cercanos al cero para todos los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5 %), comparado con el modelo WRF-RL (entre 14% y 9 %). De acuerdo a los resultados obtenidos, se verifica que una combinación de un modelo físico con modelo de redes neuronales artificiales, parece ser una gran herramienta para el pronóstico de la energía eólica.


Detalles Bibliográficos
2019
Energías renovables
Inteligencia artificial
Modelo físico de pronóstico
Modelo estadístico de pronóstico
Despacho económico de energía eléctrica
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/22126
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)
_version_ 1807522946105737216
author de Almeida Lucas, Everton
author_facet de Almeida Lucas, Everton
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
c4be27909b70efc3a2ead6cb7fc45395
9da0b6dfac957114c6a7714714b86306
17b2e49e2e4df7ee38fe44e670657c10
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/22126/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/22126/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/22126/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/22126/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/22126/1/tm-deAlmeidaLucasEverton.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv de Almeida Lucas Everton, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Gutiérrez Arce, Alejandro
da Silva Camargo, Sandro
dc.creator.none.fl_str_mv de Almeida Lucas, Everton
dc.date.accessioned.none.fl_str_mv 2019-10-11T21:11:44Z
dc.date.available.none.fl_str_mv 2019-10-11T21:11:44Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada esta realidad, y la característica fluctuante del viento en la atmósfera terrestre a escala horaria, es necesario incorporar modelos de pronósticos de energía eólica, de modo de suministrar informaciones de la generación de energía con anticipación, para que se logre hacer el despacho óptimo de energía en el sistema eléctrico. En este trabajo de tesis, se consideran los datos de generación de energía eléctrica de los parques eólicos en Uruguay, pronósticos numéricos de mesoescala referentes al mismo período de los datos de generación de los parques y el análisis del comportamiento de distintas variables atmosféricas en el período histórico de generación de energía. Con estos datos se busca optimizar los pronóosticos de energía eólica en Uruguay en base a la utilización del modelo numérico de mesoescala WRF-ARW y de redes neuronales artificiales (RNA). Se evalúan ocho modelos de pronóstico de energía eólica, basados en modelos híbridos, con el uso del modelo numérico de mesoescala WRF-ARW junto a redes neuronales artificiales (WRF-RNA) y modelo numérico WRFARW junto a regresiones lineales (WRF-RL). Los resultados fueron evaluados para un total de 31 parques eólicos (1267,4 Megawatts (MW)) y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA, con datos de velocidad del viento sin corrección por análisis cluster, presentando un error medio absoluto de aproximadamente 17% considerando pronósticos individuales para cada parque eólico. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran los valores de sesgo (bias) más cercanos al cero para todos los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5 %), comparado con el modelo WRF-RL (entre 14% y 9 %). De acuerdo a los resultados obtenidos, se verifica que una combinación de un modelo físico con modelo de redes neuronales artificiales, parece ser una gran herramienta para el pronóstico de la energía eólica.
dc.format.extent.es.fl_str_mv 168 p.
dc.format.mimetype.en.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv de Almeida Lucas, E. Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2019.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/22126
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Energías renovables
Inteligencia artificial
Modelo físico de pronóstico
Modelo estadístico de pronóstico
Despacho económico de energía eléctrica
dc.title.none.fl_str_mv Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada esta realidad, y la característica fluctuante del viento en la atmósfera terrestre a escala horaria, es necesario incorporar modelos de pronósticos de energía eólica, de modo de suministrar informaciones de la generación de energía con anticipación, para que se logre hacer el despacho óptimo de energía en el sistema eléctrico. En este trabajo de tesis, se consideran los datos de generación de energía eléctrica de los parques eólicos en Uruguay, pronósticos numéricos de mesoescala referentes al mismo período de los datos de generación de los parques y el análisis del comportamiento de distintas variables atmosféricas en el período histórico de generación de energía. Con estos datos se busca optimizar los pronóosticos de energía eólica en Uruguay en base a la utilización del modelo numérico de mesoescala WRF-ARW y de redes neuronales artificiales (RNA). Se evalúan ocho modelos de pronóstico de energía eólica, basados en modelos híbridos, con el uso del modelo numérico de mesoescala WRF-ARW junto a redes neuronales artificiales (WRF-RNA) y modelo numérico WRFARW junto a regresiones lineales (WRF-RL). Los resultados fueron evaluados para un total de 31 parques eólicos (1267,4 Megawatts (MW)) y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA, con datos de velocidad del viento sin corrección por análisis cluster, presentando un error medio absoluto de aproximadamente 17% considerando pronósticos individuales para cada parque eólico. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran los valores de sesgo (bias) más cercanos al cero para todos los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5 %), comparado con el modelo WRF-RL (entre 14% y 9 %). De acuerdo a los resultados obtenidos, se verifica que una combinación de un modelo físico con modelo de redes neuronales artificiales, parece ser una gran herramienta para el pronóstico de la energía eólica.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_cb4c8c93601b39c78cff2d1d921fa76f
identifier_str_mv de Almeida Lucas, E. Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2019.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/22126
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)
spelling de Almeida Lucas Everton, Universidad de la República (Uruguay). Facultad de Ingeniería2019-10-11T21:11:44Z2019-10-11T21:11:44Z2019de Almeida Lucas, E. Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales [en línea] Tesis de maestría. Montevideo : Udelar. FI, 2019.https://hdl.handle.net/20.500.12008/22126En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada esta realidad, y la característica fluctuante del viento en la atmósfera terrestre a escala horaria, es necesario incorporar modelos de pronósticos de energía eólica, de modo de suministrar informaciones de la generación de energía con anticipación, para que se logre hacer el despacho óptimo de energía en el sistema eléctrico. En este trabajo de tesis, se consideran los datos de generación de energía eléctrica de los parques eólicos en Uruguay, pronósticos numéricos de mesoescala referentes al mismo período de los datos de generación de los parques y el análisis del comportamiento de distintas variables atmosféricas en el período histórico de generación de energía. Con estos datos se busca optimizar los pronóosticos de energía eólica en Uruguay en base a la utilización del modelo numérico de mesoescala WRF-ARW y de redes neuronales artificiales (RNA). Se evalúan ocho modelos de pronóstico de energía eólica, basados en modelos híbridos, con el uso del modelo numérico de mesoescala WRF-ARW junto a redes neuronales artificiales (WRF-RNA) y modelo numérico WRFARW junto a regresiones lineales (WRF-RL). Los resultados fueron evaluados para un total de 31 parques eólicos (1267,4 Megawatts (MW)) y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA, con datos de velocidad del viento sin corrección por análisis cluster, presentando un error medio absoluto de aproximadamente 17% considerando pronósticos individuales para cada parque eólico. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran los valores de sesgo (bias) más cercanos al cero para todos los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5 %), comparado con el modelo WRF-RL (entre 14% y 9 %). De acuerdo a los resultados obtenidos, se verifica que una combinación de un modelo físico con modelo de redes neuronales artificiales, parece ser una gran herramienta para el pronóstico de la energía eólica.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-10-11T21:11:44Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tm-deAlmeidaLucasEverton.pdf: 9550837 bytes, checksum: 17b2e49e2e4df7ee38fe44e670657c10 (MD5)Made available in DSpace on 2019-10-11T21:11:44Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tm-deAlmeidaLucasEverton.pdf: 9550837 bytes, checksum: 17b2e49e2e4df7ee38fe44e670657c10 (MD5) Previous issue date: 2019168 p.application/pdfesspaUdelar. FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)Energías renovablesInteligencia artificialModelo físico de pronósticoModelo estadístico de pronósticoDespacho económico de energía eléctricaPronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificialesTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la Repúblicade Almeida Lucas, EvertonGutiérrez Arce, Alejandroda Silva Camargo, SandroUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería de la EnergíaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/22126/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/22126/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838520http://localhost:8080/xmlui/bitstream/20.500.12008/22126/3/license_textc4be27909b70efc3a2ead6cb7fc45395MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/22126/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtm-deAlmeidaLucasEverton.pdftm-deAlmeidaLucasEverton.pdfapplication/pdf9550837http://localhost:8080/xmlui/bitstream/20.500.12008/22126/1/tm-deAlmeidaLucasEverton.pdf17b2e49e2e4df7ee38fe44e670657c10MD5120.500.12008/221262022-04-21 11:12:48.287oai:colibri.udelar.edu.uy:20.500.12008/22126VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:34:04.240009COLIBRI - Universidad de la Repúblicafalse
spellingShingle Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
de Almeida Lucas, Everton
Energías renovables
Inteligencia artificial
Modelo físico de pronóstico
Modelo estadístico de pronóstico
Despacho económico de energía eléctrica
status_str acceptedVersion
title Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
title_full Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
title_fullStr Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
title_full_unstemmed Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
title_short Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
title_sort Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales
topic Energías renovables
Inteligencia artificial
Modelo físico de pronóstico
Modelo estadístico de pronóstico
Despacho económico de energía eléctrica
url https://hdl.handle.net/20.500.12008/22126