Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.

Randall, Martín

Supervisor(es): Belzarena, Pablo

Resumen:

El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento.


Detalles Bibliográficos
2020
Ruteo
Redes sobrepuestas
Optimización
Ingeniería de tráfico
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/25287
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523179210473472
author Randall, Martín
author_facet Randall, Martín
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
47b4ef0fcf3525544879e94183c90d75
1996b8461bc290aef6a27d78c67b6b52
0d787b1ba03feed3a091f3924e13b506
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/25287/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/25287/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/25287/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/25287/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/25287/1/Ran20.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Belzarena, Pablo
dc.creator.none.fl_str_mv Randall, Martín
dc.date.accessioned.none.fl_str_mv 2020-09-16T15:44:24Z
dc.date.available.none.fl_str_mv 2020-09-16T15:44:24Z
dc.date.issued.none.fl_str_mv 2020
dc.description.abstract.none.fl_txt_mv El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento.
dc.format.extent.es.fl_str_mv 121 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Randall, M. Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas [en línea].Tesis de maestría. Montevideo : Udelar. FI. IIE., 2020.
dc.identifier.issn.none.fl_str_mv 1688-2806
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/25287
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Ruteo
Redes sobrepuestas
Optimización
Ingeniería de tráfico
dc.title.none.fl_str_mv Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_cad743377bc60736cf00e1c2bbce3e96
identifier_str_mv Randall, M. Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas [en línea].Tesis de maestría. Montevideo : Udelar. FI. IIE., 2020.
1688-2806
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/25287
publishDate 2020
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.2020-09-16T15:44:24Z2020-09-16T15:44:24Z2020Randall, M. Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas [en línea].Tesis de maestría. Montevideo : Udelar. FI. IIE., 2020.1688-2806https://hdl.handle.net/20.500.12008/25287El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-09-15T21:33:00Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ran20.pdf: 3302403 bytes, checksum: 0d787b1ba03feed3a091f3924e13b506 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-09-16T15:31:13Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ran20.pdf: 3302403 bytes, checksum: 0d787b1ba03feed3a091f3924e13b506 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-09-16T15:44:24Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ran20.pdf: 3302403 bytes, checksum: 0d787b1ba03feed3a091f3924e13b506 (MD5) Previous issue date: 2020121 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)RuteoRedes sobrepuestasOptimizaciónIngeniería de tráficoOptimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.Tesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRandall, MartínBelzarena, PabloUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Eléctrica)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/25287/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/25287/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838725http://localhost:8080/xmlui/bitstream/20.500.12008/25287/3/license_text47b4ef0fcf3525544879e94183c90d75MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/25287/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALRan20.pdfRan20.pdfapplication/pdf3302403http://localhost:8080/xmlui/bitstream/20.500.12008/25287/1/Ran20.pdf0d787b1ba03feed3a091f3924e13b506MD5120.500.12008/252872020-09-16 12:44:24.407oai:colibri.udelar.edu.uy:20.500.12008/25287VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:17.646840COLIBRI - Universidad de la Repúblicafalse
spellingShingle Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
Randall, Martín
Ruteo
Redes sobrepuestas
Optimización
Ingeniería de tráfico
status_str acceptedVersion
title Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
title_full Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
title_fullStr Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
title_full_unstemmed Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
title_short Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
title_sort Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
topic Ruteo
Redes sobrepuestas
Optimización
Ingeniería de tráfico
url https://hdl.handle.net/20.500.12008/25287