Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.
Supervisor(es): Belzarena, Pablo
Resumen:
El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento.
2020 | |
Ruteo Redes sobrepuestas Optimización Ingeniería de tráfico |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/25287 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523179210473472 |
---|---|
author | Randall, Martín |
author_facet | Randall, Martín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 47b4ef0fcf3525544879e94183c90d75 1996b8461bc290aef6a27d78c67b6b52 0d787b1ba03feed3a091f3924e13b506 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/25287/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/25287/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/25287/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/25287/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/25287/1/Ran20.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Belzarena, Pablo |
dc.creator.none.fl_str_mv | Randall, Martín |
dc.date.accessioned.none.fl_str_mv | 2020-09-16T15:44:24Z |
dc.date.available.none.fl_str_mv | 2020-09-16T15:44:24Z |
dc.date.issued.none.fl_str_mv | 2020 |
dc.description.abstract.none.fl_txt_mv | El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento. |
dc.format.extent.es.fl_str_mv | 121 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Randall, M. Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas [en línea].Tesis de maestría. Montevideo : Udelar. FI. IIE., 2020. |
dc.identifier.issn.none.fl_str_mv | 1688-2806 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/25287 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar.FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Ruteo Redes sobrepuestas Optimización Ingeniería de tráfico |
dc.title.none.fl_str_mv | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_cad743377bc60736cf00e1c2bbce3e96 |
identifier_str_mv | Randall, M. Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas [en línea].Tesis de maestría. Montevideo : Udelar. FI. IIE., 2020. 1688-2806 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/25287 |
publishDate | 2020 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.2020-09-16T15:44:24Z2020-09-16T15:44:24Z2020Randall, M. Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas [en línea].Tesis de maestría. Montevideo : Udelar. FI. IIE., 2020.1688-2806https://hdl.handle.net/20.500.12008/25287El tema de esta Tesis es el diseño de sistemas de decisión recurrentes en el tiempo y basados en medidas. El objetivo del tomador de decisiones es optimizar alguna función de desempeño, minimizando el costo de las mediciones y de la incertidumbre asociada al sistema. En particular, se trabaja sobre una aplicación al ruteo en redes sobrepuestas con calidad de servicio. Las redes sobrepuestas son redes virtuales compuestas por nodos pertenecientes a diferentes redes (subyacentes), conectados entre sí por enlaces virtuales. En general, la política de ruteo entre las redes subyacentes suele no ser óptima, por lo que puede convenir establecer políticas propias. En esta aplicación se busca elegir la mejor ruta en cuanto a algún parámetro de calidad de servicio. Para decidir cuál es la mejor de las rutas posibles, es necesario medir el parámetro de calidad en cuestión. Estas mediciones habitualmente tienen costos asociados, por ejemplo, la interferencia que se genera para realizar la medida en cada ruta, que impacta en el tráfico de los usuarios. Lo ideal sería no tener que medir en todos los tiempos de decisión y poder predecir cuál es la calidad de servicio en función de las medidas anteriores. Sin embargo, el "no medir" genera una incertidumbre en la calidad de servicio y es posible que se elija una ruta que diferente de la óptima en el momento de decisión, por lo que también la decisión de "no medir" tiene un costo asociado: el de la calidad perdida por no escoger la ruta óptima. El objetivo es decidir en cada tiempo de decisión cuáles rutas medir y qué camino elegir, minimizando el costo total acumulado en el tiempo. En un primer abordaje se modela el problema como un Proceso de Decisión Markoviano, se prueban algoritmos de programación dinámica y se propone una solución innovadora : la aproximación por horizonte errante. Luego se liberan las asunciones sobre modelos y se propone una formulación para la utilización de técnicas de aprendizaje supervisado, para lo que se emplean clasificadores bien conocidos como son los árboles de decisión. El método de horizonte errante alcanza resultados casi-óptimos, que permiten reducir el costo de medida manteniendo el menor tiempo de ida y vuelta posible. El algoritmo de aprendizaje supervisado logra un rendimiento comparable, con otras propiedades como robustez frente a escenarios no-markovianos y un menor tiempo de procesamiento.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-09-15T21:33:00Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ran20.pdf: 3302403 bytes, checksum: 0d787b1ba03feed3a091f3924e13b506 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-09-16T15:31:13Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ran20.pdf: 3302403 bytes, checksum: 0d787b1ba03feed3a091f3924e13b506 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-09-16T15:44:24Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ran20.pdf: 3302403 bytes, checksum: 0d787b1ba03feed3a091f3924e13b506 (MD5) Previous issue date: 2020121 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)RuteoRedes sobrepuestasOptimizaciónIngeniería de tráficoOptimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas.Tesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRandall, MartínBelzarena, PabloUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Eléctrica)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/25287/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/25287/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838725http://localhost:8080/xmlui/bitstream/20.500.12008/25287/3/license_text47b4ef0fcf3525544879e94183c90d75MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/25287/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALRan20.pdfRan20.pdfapplication/pdf3302403http://localhost:8080/xmlui/bitstream/20.500.12008/25287/1/Ran20.pdf0d787b1ba03feed3a091f3924e13b506MD5120.500.12008/252872020-09-16 12:44:24.407oai:colibri.udelar.edu.uy:20.500.12008/25287VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:17.646840COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. Randall, Martín Ruteo Redes sobrepuestas Optimización Ingeniería de tráfico |
status_str | acceptedVersion |
title | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. |
title_full | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. |
title_fullStr | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. |
title_full_unstemmed | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. |
title_short | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. |
title_sort | Optimización del ruteo en redes sobrepuestas con sistemas de decisión en base a medidas. |
topic | Ruteo Redes sobrepuestas Optimización Ingeniería de tráfico |
url | https://hdl.handle.net/20.500.12008/25287 |