No-reference video quality measurement : added value of machine learning
Resumen:
Video quality measurement is an important component in the end-to-end video delivery chain. Video quality is, however, subjective, and thus, there will always be interobserver differences in the subjective opinion about the visual quality of the same video. Despite this, most existing works on objective quality measurement typically focus only on predicting a single score and evaluate their prediction accuracies based on how close it is to the mean opinion scores (or similar average based ratings). Clearly, such an approach ignores the underlying diversities in the subjective scoring process and, as a result, does not allow further analysis on how reliable the objective prediction is in terms of subjective variability. Consequently, the aim of this paper is to analyze this issue and present a machine-learning based solution to address it. We demonstrate the utility of our ideas by considering the practical scenario of video broadcast transmissions with focus on digital terrestrial television (DTT) and proposing a no-reference objective video quality estimator for such application. We conducted meaningful verification studies on different video content (including video clips recorded from real DTT broadcast transmissions) in order to verify the performance of the proposed solution. Topics : Machine learning , Video , Quality measurement , Networks
2015 | |
No-reference video quality assessment Deep learning Subjective studies Objective studies Quality of experience |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42668 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522940436086784 |
---|---|
author | Mocanu, Decebal Constantin |
author2 | Pokhrel, Jeevan Garella, Juan Pablo Seppänen, Janne Liotou, Eirini Narwaria, Manish |
author2_role | author author author author author |
author_facet | Mocanu, Decebal Constantin Pokhrel, Jeevan Garella, Juan Pablo Seppänen, Janne Liotou, Eirini Narwaria, Manish |
author_role | author |
bitstream.checksum.fl_str_mv | 528b6a3c8c7d0c6e28129d576e989607 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 94d02496ef43a515e712359891dd72a5 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/42668/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/42668/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/42668/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/42668/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/42668/1/MPGSLN15.pdf |
collection | COLIBRI |
dc.creator.none.fl_str_mv | Mocanu, Decebal Constantin Pokhrel, Jeevan Garella, Juan Pablo Seppänen, Janne Liotou, Eirini Narwaria, Manish |
dc.date.accessioned.none.fl_str_mv | 2024-02-26T19:52:32Z |
dc.date.available.none.fl_str_mv | 2024-02-26T19:52:32Z |
dc.date.issued.es.fl_str_mv | 2015 |
dc.date.submitted.es.fl_str_mv | 20240223 |
dc.description.abstract.none.fl_txt_mv | Video quality measurement is an important component in the end-to-end video delivery chain. Video quality is, however, subjective, and thus, there will always be interobserver differences in the subjective opinion about the visual quality of the same video. Despite this, most existing works on objective quality measurement typically focus only on predicting a single score and evaluate their prediction accuracies based on how close it is to the mean opinion scores (or similar average based ratings). Clearly, such an approach ignores the underlying diversities in the subjective scoring process and, as a result, does not allow further analysis on how reliable the objective prediction is in terms of subjective variability. Consequently, the aim of this paper is to analyze this issue and present a machine-learning based solution to address it. We demonstrate the utility of our ideas by considering the practical scenario of video broadcast transmissions with focus on digital terrestrial television (DTT) and proposing a no-reference objective video quality estimator for such application. We conducted meaningful verification studies on different video content (including video clips recorded from real DTT broadcast transmissions) in order to verify the performance of the proposed solution. Topics : Machine learning , Video , Quality measurement , Networks |
dc.description.es.fl_txt_mv | Publicado en Journal of Electronic Imaging, Volume 24, id. 061208, 2015 |
dc.identifier.citation.es.fl_str_mv | Mocanu, D.C, Pokhrel, J, Garella, J.P, Seppänen, J, Liotou, E, Narwaria, M. "No-reference video quality measurement: added value of machine learning" [Preprint] Publicado en: Journal of Electronic Imaging v. 24, no. 6, 2015. https://doi.org/10.1117/1.JEI.24.6.061208 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/42668 |
dc.language.iso.none.fl_str_mv | en eng |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | No-reference video quality assessment Deep learning Subjective studies Objective studies Quality of experience |
dc.title.none.fl_str_mv | No-reference video quality measurement : added value of machine learning |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Publicado en Journal of Electronic Imaging, Volume 24, id. 061208, 2015 |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_c9fbdb1071b0a979e26bad4d59d9263a |
identifier_str_mv | Mocanu, D.C, Pokhrel, J, Garella, J.P, Seppänen, J, Liotou, E, Narwaria, M. "No-reference video quality measurement: added value of machine learning" [Preprint] Publicado en: Journal of Electronic Imaging v. 24, no. 6, 2015. https://doi.org/10.1117/1.JEI.24.6.061208 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/42668 |
publishDate | 2015 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | 2024-02-26T19:52:32Z2024-02-26T19:52:32Z201520240223Mocanu, D.C, Pokhrel, J, Garella, J.P, Seppänen, J, Liotou, E, Narwaria, M. "No-reference video quality measurement: added value of machine learning" [Preprint] Publicado en: Journal of Electronic Imaging v. 24, no. 6, 2015. https://doi.org/10.1117/1.JEI.24.6.061208https://hdl.handle.net/20.500.12008/42668Publicado en Journal of Electronic Imaging, Volume 24, id. 061208, 2015Video quality measurement is an important component in the end-to-end video delivery chain. Video quality is, however, subjective, and thus, there will always be interobserver differences in the subjective opinion about the visual quality of the same video. Despite this, most existing works on objective quality measurement typically focus only on predicting a single score and evaluate their prediction accuracies based on how close it is to the mean opinion scores (or similar average based ratings). Clearly, such an approach ignores the underlying diversities in the subjective scoring process and, as a result, does not allow further analysis on how reliable the objective prediction is in terms of subjective variability. Consequently, the aim of this paper is to analyze this issue and present a machine-learning based solution to address it. We demonstrate the utility of our ideas by considering the practical scenario of video broadcast transmissions with focus on digital terrestrial television (DTT) and proposing a no-reference objective video quality estimator for such application. We conducted meaningful verification studies on different video content (including video clips recorded from real DTT broadcast transmissions) in order to verify the performance of the proposed solution. Topics : Machine learning , Video , Quality measurement , NetworksMade available in DSpace on 2024-02-26T19:52:32Z (GMT). No. of bitstreams: 5 MPGSLN15.pdf: 993590 bytes, checksum: 94d02496ef43a515e712359891dd72a5 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2015enengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)No-reference video quality assessmentDeep learningSubjective studiesObjective studiesQuality of experienceNo-reference video quality measurement : added value of machine learningPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMocanu, Decebal ConstantinPokhrel, JeevanGarella, Juan PabloSeppänen, JanneLiotou, EiriniNarwaria, ManishLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/42668/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/42668/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/42668/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/42668/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALMPGSLN15.pdfapplication/pdf993590http://localhost:8080/xmlui/bitstream/20.500.12008/42668/1/MPGSLN15.pdf94d02496ef43a515e712359891dd72a5MD5120.500.12008/426682024-02-26 16:52:32.92oai:colibri.udelar.edu.uy:20.500.12008/42668VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:44.602378COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | No-reference video quality measurement : added value of machine learning Mocanu, Decebal Constantin No-reference video quality assessment Deep learning Subjective studies Objective studies Quality of experience |
status_str | submittedVersion |
title | No-reference video quality measurement : added value of machine learning |
title_full | No-reference video quality measurement : added value of machine learning |
title_fullStr | No-reference video quality measurement : added value of machine learning |
title_full_unstemmed | No-reference video quality measurement : added value of machine learning |
title_short | No-reference video quality measurement : added value of machine learning |
title_sort | No-reference video quality measurement : added value of machine learning |
topic | No-reference video quality assessment Deep learning Subjective studies Objective studies Quality of experience |
url | https://hdl.handle.net/20.500.12008/42668 |