NILM : Multivariate DNN performance analysis with high frequency features
Resumen:
In recent years we have seen deep neural networks (DNNs) appear in almost every signal processing problem. Non Intrusive Load Monitoring (NILM) was not an exception. A detailed evaluation of the supervised deep learning approach can provide powerful insights for future applications on the matter. In this work we improve a state of the art NILM system based on DNN, by including high frequency features and modifying the autoencoders latent space dimension. Moreover, we introduce a novel dataset for evaluating NILM systems. This paper presents a contribution that adds relevant features as a multivariate input to the DNNs, based on high frequency measurements of the power. Furthermore, a thorough evaluation of the generalization capabilities of these models is presented, comparing results from public databases and those acquired locally in Latin America (LATAM), an underrepresented region on the NILM problem. The data and software generated are left of public access.
2021 | |
NILM DNN Open data Deep learning Energy disaggregation Training Power measurement Phase measurement Databases Signal processing Software |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/29820 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522897685643264 |
---|---|
author | Mariño, Camilo |
author2 | Masquil, Elías Marchesoni, Franco Fernández, Alicia Massaferro Saquieres, Pablo |
author2_role | author author author author |
author_facet | Mariño, Camilo Masquil, Elías Marchesoni, Franco Fernández, Alicia Massaferro Saquieres, Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 690dd57101bd29eb8f2bdc0c9e7a0048 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/29820/6/MMMFM21.pdf http://localhost:8080/xmlui/bitstream/20.500.12008/29820/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/29820/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/29820/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/29820/4/license_rdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería. Masquil Elías, Universidad de la República (Uruguay). Facultad de Ingeniería. Marchesoni Franco, Universidad de la República (Uruguay). Facultad de Ingeniería. Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Mariño, Camilo Masquil, Elías Marchesoni, Franco Fernández, Alicia Massaferro Saquieres, Pablo |
dc.date.accessioned.none.fl_str_mv | 2021-10-12T17:48:46Z |
dc.date.available.none.fl_str_mv | 2021-10-12T17:48:46Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | In recent years we have seen deep neural networks (DNNs) appear in almost every signal processing problem. Non Intrusive Load Monitoring (NILM) was not an exception. A detailed evaluation of the supervised deep learning approach can provide powerful insights for future applications on the matter. In this work we improve a state of the art NILM system based on DNN, by including high frequency features and modifying the autoencoders latent space dimension. Moreover, we introduce a novel dataset for evaluating NILM systems. This paper presents a contribution that adds relevant features as a multivariate input to the DNNs, based on high frequency measurements of the power. Furthermore, a thorough evaluation of the generalization capabilities of these models is presented, comparing results from public databases and those acquired locally in Latin America (LATAM), an underrepresented region on the NILM problem. The data and software generated are left of public access. |
dc.format.extent.es.fl_str_mv | 5 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.en.fl_str_mv | Mariño, C., Masquil, E., Marchesoni, F. y otros. NILM : Multivariate DNN performance analysis with high frequency features [en línea]. EN: 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5. Piscataway, NJ : IEEE, 2021. DOI: 10.1109/ISGTLatinAmerica52371.2021.9543016 |
dc.identifier.doi.none.fl_str_mv | 10.1109/ISGTLatinAmerica52371.2021.9543016 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/29820 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Open data Deep learning Energy disaggregation Training Power measurement Phase measurement Databases Signal processing Software |
dc.subject.es.fl_str_mv | NILM DNN |
dc.title.none.fl_str_mv | NILM : Multivariate DNN performance analysis with high frequency features |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | In recent years we have seen deep neural networks (DNNs) appear in almost every signal processing problem. Non Intrusive Load Monitoring (NILM) was not an exception. A detailed evaluation of the supervised deep learning approach can provide powerful insights for future applications on the matter. In this work we improve a state of the art NILM system based on DNN, by including high frequency features and modifying the autoencoders latent space dimension. Moreover, we introduce a novel dataset for evaluating NILM systems. This paper presents a contribution that adds relevant features as a multivariate input to the DNNs, based on high frequency measurements of the power. Furthermore, a thorough evaluation of the generalization capabilities of these models is presented, comparing results from public databases and those acquired locally in Latin America (LATAM), an underrepresented region on the NILM problem. The data and software generated are left of public access. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_c83a6dd03d82245b643868e3eb128231 |
identifier_str_mv | Mariño, C., Masquil, E., Marchesoni, F. y otros. NILM : Multivariate DNN performance analysis with high frequency features [en línea]. EN: 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5. Piscataway, NJ : IEEE, 2021. DOI: 10.1109/ISGTLatinAmerica52371.2021.9543016 10.1109/ISGTLatinAmerica52371.2021.9543016 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/29820 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería.Masquil Elías, Universidad de la República (Uruguay). Facultad de Ingeniería.Marchesoni Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-10-12T17:48:46Z2021-10-12T17:48:46Z2021Mariño, C., Masquil, E., Marchesoni, F. y otros. NILM : Multivariate DNN performance analysis with high frequency features [en línea]. EN: 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5. Piscataway, NJ : IEEE, 2021. DOI: 10.1109/ISGTLatinAmerica52371.2021.9543016https://hdl.handle.net/20.500.12008/2982010.1109/ISGTLatinAmerica52371.2021.9543016In recent years we have seen deep neural networks (DNNs) appear in almost every signal processing problem. Non Intrusive Load Monitoring (NILM) was not an exception. A detailed evaluation of the supervised deep learning approach can provide powerful insights for future applications on the matter. In this work we improve a state of the art NILM system based on DNN, by including high frequency features and modifying the autoencoders latent space dimension. Moreover, we introduce a novel dataset for evaluating NILM systems. This paper presents a contribution that adds relevant features as a multivariate input to the DNNs, based on high frequency measurements of the power. Furthermore, a thorough evaluation of the generalization capabilities of these models is presented, comparing results from public databases and those acquired locally in Latin America (LATAM), an underrepresented region on the NILM problem. The data and software generated are left of public access.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-10-12T15:46:55Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MMMFM21.pdf: 938404 bytes, checksum: 4a7f290809c9d26bfd02d450e79da9cf (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-10-12T16:17:47Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MMMFM21.pdf: 938404 bytes, checksum: 4a7f290809c9d26bfd02d450e79da9cf (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-10-12T17:48:46Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MMMFM21.pdf: 938404 bytes, checksum: 4a7f290809c9d26bfd02d450e79da9cf (MD5) Previous issue date: 20215 p.application/pdfenengIEEE2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)NILMDNNOpen dataDeep learningEnergy disaggregationTrainingPower measurementPhase measurementDatabasesSignal processingSoftwareNILM : Multivariate DNN performance analysis with high frequency featuresPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMariño, CamiloMasquil, ElíasMarchesoni, FrancoFernández, AliciaMassaferro Saquieres, PabloProcesamiento de SeñalesTratamiento de ImágenesORIGINALMMMFM21.pdfMMMFM21.pdfapplication/pdf937088http://localhost:8080/xmlui/bitstream/20.500.12008/29820/6/MMMFM21.pdf690dd57101bd29eb8f2bdc0c9e7a0048MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/29820/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/29820/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/29820/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/29820/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD5420.500.12008/298202024-07-24 17:25:46.307oai:colibri.udelar.edu.uy:20.500.12008/29820VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:13.141474COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | NILM : Multivariate DNN performance analysis with high frequency features Mariño, Camilo NILM DNN Open data Deep learning Energy disaggregation Training Power measurement Phase measurement Databases Signal processing Software |
status_str | publishedVersion |
title | NILM : Multivariate DNN performance analysis with high frequency features |
title_full | NILM : Multivariate DNN performance analysis with high frequency features |
title_fullStr | NILM : Multivariate DNN performance analysis with high frequency features |
title_full_unstemmed | NILM : Multivariate DNN performance analysis with high frequency features |
title_short | NILM : Multivariate DNN performance analysis with high frequency features |
title_sort | NILM : Multivariate DNN performance analysis with high frequency features |
topic | NILM DNN Open data Deep learning Energy disaggregation Training Power measurement Phase measurement Databases Signal processing Software |
url | https://hdl.handle.net/20.500.12008/29820 |