Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya

Scopelli, Vittorio - Pena, Pablo

Resumen:

Renewable energies are revolutionizing the market and electrical networks. These changes present a challenge for all agents of the electrical system; in particular, for those who want to predict or plan the state of the electrical network in the future. In recent years, the intermittent nature of these energy sources has become a planning problem that many have tried to solve, proposing different methods. Since 2013, UTE, the national electricity company of Uruguay, has been implementing algorithms to solve the probabilistic load flow calculation based on the Monte Carlo method. In this work, the use of Point Estimation is proposed, an alternative method faster than Monte Carlo, although less precise, and which has a strong support in recent scientific publications. A real application of the Point Estimation algorithm to the Uruguayan network is presented and it is compared with the classic Monte Carlo Method. The results on the Uruguayan system are promising, showing that the method allows to capture the general performance of the system in a time at least one order less than Monte Carlo.


Detalles Bibliográficos
2020
ANII_FSE_1_2018_1_153061
Estimation theory
Load flow
Monte Carlo methods
Power transmission planning
Probability
Renewable energy sources
Español
Universidad de la República
COLIBRI
https://ieeexplore.ieee.org/document/9326163
https://hdl.handle.net/20.500.12008/33980
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899428376576
author Scopelli, Vittorio
author2 Pena, Pablo
author2_role author
author_facet Scopelli, Vittorio
Pena, Pablo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
1e5bf77c1b10fb1cb031e158c2e370d1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/33980/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/33980/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/33980/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/33980/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/33980/1/SP20.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Scopelli Vittorio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Pena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Scopelli, Vittorio
Pena, Pablo
dc.date.accessioned.none.fl_str_mv 2022-09-27T12:36:36Z
dc.date.available.none.fl_str_mv 2022-09-27T12:36:36Z
dc.date.issued.none.fl_str_mv 2020
dc.description.abstract.none.fl_txt_mv Renewable energies are revolutionizing the market and electrical networks. These changes present a challenge for all agents of the electrical system; in particular, for those who want to predict or plan the state of the electrical network in the future. In recent years, the intermittent nature of these energy sources has become a planning problem that many have tried to solve, proposing different methods. Since 2013, UTE, the national electricity company of Uruguay, has been implementing algorithms to solve the probabilistic load flow calculation based on the Monte Carlo method. In this work, the use of Point Estimation is proposed, an alternative method faster than Monte Carlo, although less precise, and which has a strong support in recent scientific publications. A real application of the Point Estimation algorithm to the Uruguayan network is presented and it is compared with the classic Monte Carlo Method. The results on the Uruguayan system are promising, showing that the method allows to capture the general performance of the system in a time at least one order less than Monte Carlo.
dc.description.es.fl_txt_mv Presentado y publicado en IEEE T&D LA 2020, Montevideo, Uruguay, 28 sep-2 oct., pp. 1-6.
dc.description.sponsorship.none.fl_txt_mv ANII_FSE_1_2018_1_153061
dc.format.extent.es.fl_str_mv 6 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Scopelli, V. y Pena, P. Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya [Preprint]. Publicado en : IEEE T&D LA 2020, Montevideo, Uruguay, 28 sep-2 oct. 6 p. DOI: 10.1109/TDLA47668.2020.9326163.
dc.identifier.uri.none.fl_str_mv https://ieeexplore.ieee.org/document/9326163
https://hdl.handle.net/20.500.12008/33980
dc.language.iso.none.fl_str_mv es
spa
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Estimation theory
Load flow
Monte Carlo methods
Power transmission planning
Probability
Renewable energy sources
dc.title.none.fl_str_mv Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Presentado y publicado en IEEE T&D LA 2020, Montevideo, Uruguay, 28 sep-2 oct., pp. 1-6.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_c7ac3f37a5009d28db14a5717832bc82
identifier_str_mv Scopelli, V. y Pena, P. Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya [Preprint]. Publicado en : IEEE T&D LA 2020, Montevideo, Uruguay, 28 sep-2 oct. 6 p. DOI: 10.1109/TDLA47668.2020.9326163.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/33980
publishDate 2020
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Scopelli Vittorio, Universidad de la República (Uruguay). Facultad de Ingeniería.Pena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-09-27T12:36:36Z2022-09-27T12:36:36Z2020Scopelli, V. y Pena, P. Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya [Preprint]. Publicado en : IEEE T&D LA 2020, Montevideo, Uruguay, 28 sep-2 oct. 6 p. DOI: 10.1109/TDLA47668.2020.9326163.https://ieeexplore.ieee.org/document/9326163https://hdl.handle.net/20.500.12008/33980Presentado y publicado en IEEE T&D LA 2020, Montevideo, Uruguay, 28 sep-2 oct., pp. 1-6.Renewable energies are revolutionizing the market and electrical networks. These changes present a challenge for all agents of the electrical system; in particular, for those who want to predict or plan the state of the electrical network in the future. In recent years, the intermittent nature of these energy sources has become a planning problem that many have tried to solve, proposing different methods. Since 2013, UTE, the national electricity company of Uruguay, has been implementing algorithms to solve the probabilistic load flow calculation based on the Monte Carlo method. In this work, the use of Point Estimation is proposed, an alternative method faster than Monte Carlo, although less precise, and which has a strong support in recent scientific publications. A real application of the Point Estimation algorithm to the Uruguayan network is presented and it is compared with the classic Monte Carlo Method. The results on the Uruguayan system are promising, showing that the method allows to capture the general performance of the system in a time at least one order less than Monte Carlo.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-09-26T18:14:04Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) SP20.pdf: 430260 bytes, checksum: 1e5bf77c1b10fb1cb031e158c2e370d1 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-09-26T18:56:08Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) SP20.pdf: 430260 bytes, checksum: 1e5bf77c1b10fb1cb031e158c2e370d1 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-09-27T12:36:36Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) SP20.pdf: 430260 bytes, checksum: 1e5bf77c1b10fb1cb031e158c2e370d1 (MD5) Previous issue date: 2020ANII_FSE_1_2018_1_1530616 p.application/pdfesspaLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Estimation theoryLoad flowMonte Carlo methodsPower transmission planningProbabilityRenewable energy sourcesAplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguayaPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaScopelli, VittorioPena, PabloLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33980/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33980/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33980/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33980/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALSP20.pdfSP20.pdfapplication/pdf430260http://localhost:8080/xmlui/bitstream/20.500.12008/33980/1/SP20.pdf1e5bf77c1b10fb1cb031e158c2e370d1MD5120.500.12008/339802024-05-09 13:35:31.788oai:colibri.udelar.edu.uy:20.500.12008/33980VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:17.944301COLIBRI - Universidad de la Repúblicafalse
spellingShingle Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
Scopelli, Vittorio
Estimation theory
Load flow
Monte Carlo methods
Power transmission planning
Probability
Renewable energy sources
status_str submittedVersion
title Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
title_full Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
title_fullStr Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
title_full_unstemmed Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
title_short Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
title_sort Aplicación del método Point Estimation para el cálculo de flujo de carga probabilístico en la red de transmisión uruguaya
topic Estimation theory
Load flow
Monte Carlo methods
Power transmission planning
Probability
Renewable energy sources
url https://ieeexplore.ieee.org/document/9326163
https://hdl.handle.net/20.500.12008/33980