Effective construction of Hilbert modular forms of half-integral weight
Resumen:
Given a Hilbert cuspidal newform g we construct a family of modular forms of half-integral weight whose Fourier coefficients give the central values of the twisted L-series of g by fundamental discriminants. The family is parametrized by quadratic conditions on the primes dividing the level of g, where each form has coefficients supported on the discriminants satisfying the conditions. These modular forms are given as generalized theta series and thus their coefficients can be effectively computed. By considering skew-holomorphic forms of half-integral weight our construction works over arbitrary totally real number fields, except that in the case of odd degree the square levels are excluded. It includes all discriminants except those divisible by primes whose square divides the level.
2022 | |
Number Theory | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38376 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
A database of paramodular forms from quinary orthogonal modular forms
Autor(es):: Assaf, Eran
Fecha de publicación:: (2023) -
An explicit Waldspurger formula for Hilbert modular forms II
Autor(es):: Nicolás, Sirolli
Fecha de publicación:: (2020) -
On the 2-Selmer group of Jacobians of hyperelliptic curves
Autor(es):: Barrera Salazar, Daniel
Fecha de publicación:: (2023) -
La conjetura de Böcherer paramodular
Autor(es):: Mejail, Daniel
Fecha de publicación:: (2024) -
Weighted lens depth: Some applications to supervised classification
Autor(es):: Cholaquidis, Alejandro
Fecha de publicación:: (2020)