TReLSU-HS : A new handshape dataset for Uruguayan Sign Language Recognition.
Resumen:
In this work we present TReLSU-HS, a new database composed of more than 3000 still images for handshape recognition in the context of Uruguayan Sign Language. TReLSU-HS has 30 classes sampled from 5 native signers. The images were obtained from a previous dataset of Uruguayan Sign Language called Léxico TReLSU. Each component image was labeled according to consistent criteria. This database is useful for the computer science community, especially for designing new sign language recognition methods or to better understand the generalization capability of a given recognition system when it is applied to Uruguayan Sign Language data.
2020 | |
LSU Computer vision |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/25983 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Toward a computational theory of perception
Autor(es):: Grompone von Gioi, Rafael
Fecha de publicación:: (2009) -
Collaborative sources identification in mixed signals via hierarchical sparse modeling
Autor(es):: Sprechmann, Pablo
Fecha de publicación:: (2011) -
Unsupervised thresholds for shape matching
Autor(es):: Musé, Pablo
Fecha de publicación:: (2003) -
Single image non-uniform blur kernel estimation via adaptive basis decomposition.
Autor(es):: Carbajal, Guillermo
Fecha de publicación:: (2021) -
Robust estimation of local affine maps and its applications to image matching.
Autor(es):: Rodriguez, Mariano
Fecha de publicación:: (2020)