Reconocimiento y conteo de manzanas.

Garderes, Roxana - Gutiérrez, Facundo

Supervisor(es): Tejera, Gonzalo - Marzoa, Mercedes

Resumen:

Obtener información precisa sobre la cantidad de manzanas en plantaciones agrícolas resulta vital para potenciar las decisiones de los productores en relación con la producción, distribución y comercialización de dichos cultivos. En este contexto, la robótica y las redes neuronales emergen como herramientas óptimas, dado su notable avance en los últimos años. A lo largo de este proyecto, se buscaron soluciones para la identificación y el conteo de manzanas en videos filmados por robots terrestres, que circulan entre hileras de árboles de manzanas en plantaciones. Con este objetivo, se propusieron combinaciones de redes neuronales de detección con algoritmos de seguimiento, tomando la cantidad de manzanas identificadas por los algoritmos como la cantidad total de manzanas en un video. Los modelos de redes neuronales seleccionados para detección fueron Faster R-CNN, YOLOv5 y YOLOv8. Estos modelos se entrenaron utilizando múltiples conjuntos de datos, y se evaluaron utilizando sus propios datos de prueba y un conjunto adicional construido a partir de datos del ambiente real. Como algoritmos de seguimiento, se evaluaron StrongSort, Bytetrack y OCSort, en combinación con los modelos de detección entrenados YOLOv5 y YOLOv8. Ante los resultados obtenidos en la etapa de conteo y las características de los árboles de manzanas, se plantea la utilización de dos métodos de ajuste de predicciones, uno basado en regresión lineal y otro basado en coeficientes de ajuste.


Detalles Bibliográficos
2023
Manzanas
Redes neuronales
Seguimiento
Conteo
Detección
ROS
YOLO
YOLOv5
Faster R-CNN
SORT
OCSort
Bytetrack
StrongSort
Regresión lineal
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41495
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807523230152392704
author Garderes, Roxana
author2 Gutiérrez, Facundo
author2_role author
author_facet Garderes, Roxana
Gutiérrez, Facundo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
f80d8004dbf06c67910869c4ce81cdb9
71ed42ef0a0b648670f707320be37b90
18f42934f9d8f46836e97bc87065c6a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/41495/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/41495/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/41495/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/41495/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/41495/1/GG23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Garderes Roxana, Universidad de la República (Uruguay). Facultad de Ingeniería.
Gutiérrez Facundo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Tejera, Gonzalo
Marzoa, Mercedes
dc.creator.none.fl_str_mv Garderes, Roxana
Gutiérrez, Facundo
dc.date.accessioned.none.fl_str_mv 2023-11-24T20:10:43Z
dc.date.available.none.fl_str_mv 2023-11-24T20:10:43Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Obtener información precisa sobre la cantidad de manzanas en plantaciones agrícolas resulta vital para potenciar las decisiones de los productores en relación con la producción, distribución y comercialización de dichos cultivos. En este contexto, la robótica y las redes neuronales emergen como herramientas óptimas, dado su notable avance en los últimos años. A lo largo de este proyecto, se buscaron soluciones para la identificación y el conteo de manzanas en videos filmados por robots terrestres, que circulan entre hileras de árboles de manzanas en plantaciones. Con este objetivo, se propusieron combinaciones de redes neuronales de detección con algoritmos de seguimiento, tomando la cantidad de manzanas identificadas por los algoritmos como la cantidad total de manzanas en un video. Los modelos de redes neuronales seleccionados para detección fueron Faster R-CNN, YOLOv5 y YOLOv8. Estos modelos se entrenaron utilizando múltiples conjuntos de datos, y se evaluaron utilizando sus propios datos de prueba y un conjunto adicional construido a partir de datos del ambiente real. Como algoritmos de seguimiento, se evaluaron StrongSort, Bytetrack y OCSort, en combinación con los modelos de detección entrenados YOLOv5 y YOLOv8. Ante los resultados obtenidos en la etapa de conteo y las características de los árboles de manzanas, se plantea la utilización de dos métodos de ajuste de predicciones, uno basado en regresión lineal y otro basado en coeficientes de ajuste.
dc.format.extent.es.fl_str_mv 105 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Garderes, R. y Gutiérrez, F. Reconocimiento y conteo de manzanas [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/41495
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Manzanas
Redes neuronales
Seguimiento
Conteo
Detección
ROS
YOLO
YOLOv5
Faster R-CNN
SORT
OCSort
Bytetrack
StrongSort
Regresión lineal
dc.title.none.fl_str_mv Reconocimiento y conteo de manzanas.
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Obtener información precisa sobre la cantidad de manzanas en plantaciones agrícolas resulta vital para potenciar las decisiones de los productores en relación con la producción, distribución y comercialización de dichos cultivos. En este contexto, la robótica y las redes neuronales emergen como herramientas óptimas, dado su notable avance en los últimos años. A lo largo de este proyecto, se buscaron soluciones para la identificación y el conteo de manzanas en videos filmados por robots terrestres, que circulan entre hileras de árboles de manzanas en plantaciones. Con este objetivo, se propusieron combinaciones de redes neuronales de detección con algoritmos de seguimiento, tomando la cantidad de manzanas identificadas por los algoritmos como la cantidad total de manzanas en un video. Los modelos de redes neuronales seleccionados para detección fueron Faster R-CNN, YOLOv5 y YOLOv8. Estos modelos se entrenaron utilizando múltiples conjuntos de datos, y se evaluaron utilizando sus propios datos de prueba y un conjunto adicional construido a partir de datos del ambiente real. Como algoritmos de seguimiento, se evaluaron StrongSort, Bytetrack y OCSort, en combinación con los modelos de detección entrenados YOLOv5 y YOLOv8. Ante los resultados obtenidos en la etapa de conteo y las características de los árboles de manzanas, se plantea la utilización de dos métodos de ajuste de predicciones, uno basado en regresión lineal y otro basado en coeficientes de ajuste.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_c448f35a014f42d70cc94eb9652b7db3
identifier_str_mv Garderes, R. y Gutiérrez, F. Reconocimiento y conteo de manzanas [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/41495
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Garderes Roxana, Universidad de la República (Uruguay). Facultad de Ingeniería.Gutiérrez Facundo, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-11-24T20:10:43Z2023-11-24T20:10:43Z2023Garderes, R. y Gutiérrez, F. Reconocimiento y conteo de manzanas [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.https://hdl.handle.net/20.500.12008/41495Obtener información precisa sobre la cantidad de manzanas en plantaciones agrícolas resulta vital para potenciar las decisiones de los productores en relación con la producción, distribución y comercialización de dichos cultivos. En este contexto, la robótica y las redes neuronales emergen como herramientas óptimas, dado su notable avance en los últimos años. A lo largo de este proyecto, se buscaron soluciones para la identificación y el conteo de manzanas en videos filmados por robots terrestres, que circulan entre hileras de árboles de manzanas en plantaciones. Con este objetivo, se propusieron combinaciones de redes neuronales de detección con algoritmos de seguimiento, tomando la cantidad de manzanas identificadas por los algoritmos como la cantidad total de manzanas en un video. Los modelos de redes neuronales seleccionados para detección fueron Faster R-CNN, YOLOv5 y YOLOv8. Estos modelos se entrenaron utilizando múltiples conjuntos de datos, y se evaluaron utilizando sus propios datos de prueba y un conjunto adicional construido a partir de datos del ambiente real. Como algoritmos de seguimiento, se evaluaron StrongSort, Bytetrack y OCSort, en combinación con los modelos de detección entrenados YOLOv5 y YOLOv8. Ante los resultados obtenidos en la etapa de conteo y las características de los árboles de manzanas, se plantea la utilización de dos métodos de ajuste de predicciones, uno basado en regresión lineal y otro basado en coeficientes de ajuste.Submitted by Berón Cecilia (cberon@fing.edu.uy) on 2023-11-23T19:26:58Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) GG23.pdf: 31490445 bytes, checksum: 18f42934f9d8f46836e97bc87065c6a1 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-11-24T18:11:00Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) GG23.pdf: 31490445 bytes, checksum: 18f42934f9d8f46836e97bc87065c6a1 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-11-24T20:10:43Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) GG23.pdf: 31490445 bytes, checksum: 18f42934f9d8f46836e97bc87065c6a1 (MD5) Previous issue date: 2023105 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)ManzanasRedes neuronalesSeguimientoConteoDetecciónROSYOLOYOLOv5Faster R-CNNSORTOCSortBytetrackStrongSortRegresión linealReconocimiento y conteo de manzanas.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGarderes, RoxanaGutiérrez, FacundoTejera, GonzaloMarzoa, MercedesUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero en Computación.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41495/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/41495/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-817131http://localhost:8080/xmlui/bitstream/20.500.12008/41495/3/license_textf80d8004dbf06c67910869c4ce81cdb9MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/41495/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINALGG23.pdfGG23.pdfapplication/pdf31490445http://localhost:8080/xmlui/bitstream/20.500.12008/41495/1/GG23.pdf18f42934f9d8f46836e97bc87065c6a1MD5120.500.12008/414952024-04-12 14:06:40.661oai:colibri.udelar.edu.uy:20.500.12008/41495VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:29.302340COLIBRI - Universidad de la Repúblicafalse
spellingShingle Reconocimiento y conteo de manzanas.
Garderes, Roxana
Manzanas
Redes neuronales
Seguimiento
Conteo
Detección
ROS
YOLO
YOLOv5
Faster R-CNN
SORT
OCSort
Bytetrack
StrongSort
Regresión lineal
status_str acceptedVersion
title Reconocimiento y conteo de manzanas.
title_full Reconocimiento y conteo de manzanas.
title_fullStr Reconocimiento y conteo de manzanas.
title_full_unstemmed Reconocimiento y conteo de manzanas.
title_short Reconocimiento y conteo de manzanas.
title_sort Reconocimiento y conteo de manzanas.
topic Manzanas
Redes neuronales
Seguimiento
Conteo
Detección
ROS
YOLO
YOLOv5
Faster R-CNN
SORT
OCSort
Bytetrack
StrongSort
Regresión lineal
url https://hdl.handle.net/20.500.12008/41495