Selective annotation of few data for beat tracking of Latin American music using rhythmic features.
Resumen:
Training state-of-the-art beat tracking models usually requires large amounts of annotated data. It is widely known that data annotation is a time-consuming process and generally involves expert knowledge in the context of MIR. This can be particularly challenging if we consider culture-specific datasets. Previous research has shown that, under certain homogeneity conditions, it is possible to obtain good tracking results with these models using few training datapoints. However, this shifts the problem to that of the selection of these data. In this paper, we propose a methodology for selectively annotating meaningful samples from a dataset with the objective of training a beat tracker. We extract a rhythmic feature from each track and apply selection methods in the feature space limited by a budget of samples to be annotated. We then train a TCN-based state-of-the-art model using the selected data. The trained model is shown to perform well on the remainder of the dataset when compared to random selection. We hope that our study will alleviate the annotation process of culture-specific datasets and ultimately help build a more culturally diverse perspective in the field of Music Information Retrieval.
2024 | |
Este trabajo fue parcialmente apoyado por la Coordinación para el Perfeccionamiento del Personal de Educación Superior – Brasil (CAPES) – Código de Finanzas 001 El Consejo Nacional de Desarrollo Científico y Tecnológico (CNPq) – números de subvención 141356/2018-9 y 311146/2021-0 El Sistema Nacional de Investigadores – Agencia Nacional de Investigación e Innovación (SNI-ANII) |
|
Beat tracking Selective annotation Rhythmic description |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://transactions.ismir.net/articles/10.5334/tismir.170
https://hdl.handle.net/20.500.12008/43862 |
|
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522942587764736 |
---|---|
author | Maia, Lucas Simões |
author2 | Rocamora, Martín Biscainho, Luiz W. P. Fuentes, Magdalena |
author2_role | author author author |
author_facet | Maia, Lucas Simões Rocamora, Martín Biscainho, Luiz W. P. Fuentes, Magdalena |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c 3fd1ebed2dc74f31b189736d0c5b4212 71ed42ef0a0b648670f707320be37b90 ff860b8eba53232186f5e4a9dc2e0f25 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/43862/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/43862/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/43862/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/43862/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/43862/1/MRBF24.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Maia Lucas Simões, Universidade Federal do Rio de Janeiro, Brazil Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. Biscainho Luiz W. P., Universidade Federal do Rio de Janeiro Fuentes Magdalena, New York University, United States |
dc.creator.none.fl_str_mv | Maia, Lucas Simões Rocamora, Martín Biscainho, Luiz W. P. Fuentes, Magdalena |
dc.date.accessioned.none.fl_str_mv | 2024-05-17T14:33:38Z |
dc.date.available.none.fl_str_mv | 2024-05-17T14:33:38Z |
dc.date.issued.none.fl_str_mv | 2024 |
dc.description.abstract.none.fl_txt_mv | Training state-of-the-art beat tracking models usually requires large amounts of annotated data. It is widely known that data annotation is a time-consuming process and generally involves expert knowledge in the context of MIR. This can be particularly challenging if we consider culture-specific datasets. Previous research has shown that, under certain homogeneity conditions, it is possible to obtain good tracking results with these models using few training datapoints. However, this shifts the problem to that of the selection of these data. In this paper, we propose a methodology for selectively annotating meaningful samples from a dataset with the objective of training a beat tracker. We extract a rhythmic feature from each track and apply selection methods in the feature space limited by a budget of samples to be annotated. We then train a TCN-based state-of-the-art model using the selected data. The trained model is shown to perform well on the remainder of the dataset when compared to random selection. We hope that our study will alleviate the annotation process of culture-specific datasets and ultimately help build a more culturally diverse perspective in the field of Music Information Retrieval. |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo fue parcialmente apoyado por la Coordinación para el Perfeccionamiento del Personal de Educación Superior – Brasil (CAPES) – Código de Finanzas 001 El Consejo Nacional de Desarrollo Científico y Tecnológico (CNPq) – números de subvención 141356/2018-9 y 311146/2021-0 El Sistema Nacional de Investigadores – Agencia Nacional de Investigación e Innovación (SNI-ANII) |
dc.format.extent.es.fl_str_mv | 14 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Maia, L., Rocamora, M., Biscainho, L. y otros. "Selective annotation of few data for beat tracking of Latin American music using rhythmic features". Transactions of the International Society for Music Information Retrieval. [en línea]. 2024, vol. 7, no 1, pp. 99-112. DOI: 10.5334/tismir.170 |
dc.identifier.doi.none.fl_str_mv | 10.5334/tismir.170 |
dc.identifier.eissn.none.fl_str_mv | 2514-3298 |
dc.identifier.uri.none.fl_str_mv | https://transactions.ismir.net/articles/10.5334/tismir.170 https://hdl.handle.net/20.500.12008/43862 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | International Society for Music Information Retrieval (ISMIR) |
dc.relation.ispartof.es.fl_str_mv | Transactions of the International Society for Music Information Retrieval, vol. 7, no 1, may 2024, pp. 99-112. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Beat tracking Selective annotation Rhythmic description |
dc.title.none.fl_str_mv | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Training state-of-the-art beat tracking models usually requires large amounts of annotated data. It is widely known that data annotation is a time-consuming process and generally involves expert knowledge in the context of MIR. This can be particularly challenging if we consider culture-specific datasets. Previous research has shown that, under certain homogeneity conditions, it is possible to obtain good tracking results with these models using few training datapoints. However, this shifts the problem to that of the selection of these data. In this paper, we propose a methodology for selectively annotating meaningful samples from a dataset with the objective of training a beat tracker. We extract a rhythmic feature from each track and apply selection methods in the feature space limited by a budget of samples to be annotated. We then train a TCN-based state-of-the-art model using the selected data. The trained model is shown to perform well on the remainder of the dataset when compared to random selection. We hope that our study will alleviate the annotation process of culture-specific datasets and ultimately help build a more culturally diverse perspective in the field of Music Information Retrieval. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_c24f9b034ddcac4f9260a23684f8b89c |
identifier_str_mv | Maia, L., Rocamora, M., Biscainho, L. y otros. "Selective annotation of few data for beat tracking of Latin American music using rhythmic features". Transactions of the International Society for Music Information Retrieval. [en línea]. 2024, vol. 7, no 1, pp. 99-112. DOI: 10.5334/tismir.170 10.5334/tismir.170 2514-3298 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/43862 |
publishDate | 2024 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Maia Lucas Simões, Universidade Federal do Rio de Janeiro, BrazilRocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.Biscainho Luiz W. P., Universidade Federal do Rio de JaneiroFuentes Magdalena, New York University, United States2024-05-17T14:33:38Z2024-05-17T14:33:38Z2024Maia, L., Rocamora, M., Biscainho, L. y otros. "Selective annotation of few data for beat tracking of Latin American music using rhythmic features". Transactions of the International Society for Music Information Retrieval. [en línea]. 2024, vol. 7, no 1, pp. 99-112. DOI: 10.5334/tismir.170https://transactions.ismir.net/articles/10.5334/tismir.170https://hdl.handle.net/20.500.12008/4386210.5334/tismir.1702514-3298Training state-of-the-art beat tracking models usually requires large amounts of annotated data. It is widely known that data annotation is a time-consuming process and generally involves expert knowledge in the context of MIR. This can be particularly challenging if we consider culture-specific datasets. Previous research has shown that, under certain homogeneity conditions, it is possible to obtain good tracking results with these models using few training datapoints. However, this shifts the problem to that of the selection of these data. In this paper, we propose a methodology for selectively annotating meaningful samples from a dataset with the objective of training a beat tracker. We extract a rhythmic feature from each track and apply selection methods in the feature space limited by a budget of samples to be annotated. We then train a TCN-based state-of-the-art model using the selected data. The trained model is shown to perform well on the remainder of the dataset when compared to random selection. We hope that our study will alleviate the annotation process of culture-specific datasets and ultimately help build a more culturally diverse perspective in the field of Music Information Retrieval.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2024-05-16T22:11:05Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) MRBF24.pdf: 3089838 bytes, checksum: ff860b8eba53232186f5e4a9dc2e0f25 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-05-17T14:02:04Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) MRBF24.pdf: 3089838 bytes, checksum: ff860b8eba53232186f5e4a9dc2e0f25 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-05-17T14:33:38Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) MRBF24.pdf: 3089838 bytes, checksum: ff860b8eba53232186f5e4a9dc2e0f25 (MD5) Previous issue date: 2024Este trabajo fue parcialmente apoyado por la Coordinación para el Perfeccionamiento del Personal de Educación Superior – Brasil (CAPES) – Código de Finanzas 001El Consejo Nacional de Desarrollo Científico y Tecnológico (CNPq) – números de subvención 141356/2018-9 y 311146/2021-0El Sistema Nacional de Investigadores – Agencia Nacional de Investigación e Innovación (SNI-ANII)14 p.application/pdfenengInternational Society for Music Information Retrieval (ISMIR)Transactions of the International Society for Music Information Retrieval, vol. 7, no 1, may 2024, pp. 99-112.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Beat trackingSelective annotationRhythmic descriptionSelective annotation of few data for beat tracking of Latin American music using rhythmic features.Artículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMaia, Lucas SimõesRocamora, MartínBiscainho, Luiz W. P.Fuentes, MagdalenaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/43862/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/43862/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820438http://localhost:8080/xmlui/bitstream/20.500.12008/43862/3/license_text3fd1ebed2dc74f31b189736d0c5b4212MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/43862/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINALMRBF24.pdfMRBF24.pdfapplication/pdf3089838http://localhost:8080/xmlui/bitstream/20.500.12008/43862/1/MRBF24.pdfff860b8eba53232186f5e4a9dc2e0f25MD5120.500.12008/438622024-05-17 11:33:38.589oai:colibri.udelar.edu.uy:20.500.12008/43862VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:52.414481COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. Maia, Lucas Simões Beat tracking Selective annotation Rhythmic description |
status_str | publishedVersion |
title | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. |
title_full | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. |
title_fullStr | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. |
title_full_unstemmed | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. |
title_short | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. |
title_sort | Selective annotation of few data for beat tracking of Latin American music using rhythmic features. |
topic | Beat tracking Selective annotation Rhythmic description |
url | https://transactions.ismir.net/articles/10.5334/tismir.170 https://hdl.handle.net/20.500.12008/43862 |