Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front

Pedocchi, Francisco - Maciel, Fernanda - Santoro, Pablo E.

Resumen:

Both remote sensing and numerical modeling studies heavily rely on field data for calibration and validation, but they are seldom used to validate each other. In this work we used the turbidity front detected from satellite imagery to evaluate the performance of a numerical hydro-sedimentological model of the Rio de la Plata. The Rio de la Plata is a micro-tidal estuary located between Argentina and Uruguay in South America. It is approximately 280 km long and its width increases from 20 km at the inner part to 220 km at its mouth. Due to its large extension, satellite images are one of the few tools able to provide a synoptic view of the estuary. The estuary receives an annual mean flow of 22.000 m³/s from the Parana and Uruguay rivers, and 160x106 tons/yr of sediment, which are mostly cohesive sediments coming from the upper Parana River basin. The following data was available for studying the response of the system to the main forcings: daily discharges of the main tributaries from 2001 to 2017 (the mean discharge for the 2014-2017 period was 24250 m³/s); wind data every six hours from the European Centre for Medium-Range Weather Forecasts (ECMWF); CTD salinity measurements at two sites along the northern coast of the Rio de la Plata (just in front of Montevideo and approximately 40 km to the W). We used images from the MODIS-Aqua satellite mission from 2014 to 2017. The images have a spatial resolution of approximately 1 km and a daily time step, and we used the red channel reflectance (wavelength of 645 nm) to detect the turbidity front location. The turbid river water in the inner and intermediate regions of the estuary has high reflectance, while the clear seawater in the outer zone and continental shelf has negligible reflectance. This allowed us to implement an image-based, autonomous algorithm, defining the turbidity front as a reflectance level that ‘best’ separates the two reflectance regions. We analyzed the distribution of the front location over the 2014-2017 period, and found that the front location along the Uruguayan coast is more often located to the E of Montevideo, approximately 60% of the time, being the maximum eastward distance 143 km. On the other hand, we observed that the front could recede up to 70 km to the W of Montevideo. The turbidity front location along the Uruguayan coast presented statistically significant linear correlation with the Parana and Uruguay river discharges, with larger discharges being associated with positions further to the E. Regarding the wind, we observed as a general trend that positions to the W are associated with relatively weaker winds from all directions, while positions to the E show a larger scatter and are more frequently associated with stronger winds. We also observed a general trend in the data indicating that the front location along the north coast was particularly affected by winds coming from the SW and ENE directions.


Detalles Bibliográficos
2019
Imágenes satelitales
MODIS
Frente de turbidez
Estuario
Modelo hidrosedimentológico
Teledetección
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/26023
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522888981413888
author Pedocchi, Francisco
author2 Maciel, Fernanda
Santoro, Pablo E.
author2_role author
author
author_facet Pedocchi, Francisco
Maciel, Fernanda
Santoro, Pablo E.
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
bb66dcbdf7fd7aa7bce25f3cf50d2042
1996b8461bc290aef6a27d78c67b6b52
f109dd2428b476d43de9426ac411bb46
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/26023/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/26023/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/26023/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/26023/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/26023/1/PMS19.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Pedocchi Francisco, Universidad de la República (Uruguay). Facultad de Ingeniería.
Maciel Fernanda, Universidad de la República (Uruguay). Facultad de Ingeniería
Santoro Pablo E., Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.coverage.spatial.es.fl_str_mv Río de la Plata
dc.creator.none.fl_str_mv Pedocchi, Francisco
Maciel, Fernanda
Santoro, Pablo E.
dc.date.accessioned.none.fl_str_mv 2020-12-02T13:10:47Z
dc.date.available.none.fl_str_mv 2020-12-02T13:10:47Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv Both remote sensing and numerical modeling studies heavily rely on field data for calibration and validation, but they are seldom used to validate each other. In this work we used the turbidity front detected from satellite imagery to evaluate the performance of a numerical hydro-sedimentological model of the Rio de la Plata. The Rio de la Plata is a micro-tidal estuary located between Argentina and Uruguay in South America. It is approximately 280 km long and its width increases from 20 km at the inner part to 220 km at its mouth. Due to its large extension, satellite images are one of the few tools able to provide a synoptic view of the estuary. The estuary receives an annual mean flow of 22.000 m³/s from the Parana and Uruguay rivers, and 160x106 tons/yr of sediment, which are mostly cohesive sediments coming from the upper Parana River basin. The following data was available for studying the response of the system to the main forcings: daily discharges of the main tributaries from 2001 to 2017 (the mean discharge for the 2014-2017 period was 24250 m³/s); wind data every six hours from the European Centre for Medium-Range Weather Forecasts (ECMWF); CTD salinity measurements at two sites along the northern coast of the Rio de la Plata (just in front of Montevideo and approximately 40 km to the W). We used images from the MODIS-Aqua satellite mission from 2014 to 2017. The images have a spatial resolution of approximately 1 km and a daily time step, and we used the red channel reflectance (wavelength of 645 nm) to detect the turbidity front location. The turbid river water in the inner and intermediate regions of the estuary has high reflectance, while the clear seawater in the outer zone and continental shelf has negligible reflectance. This allowed us to implement an image-based, autonomous algorithm, defining the turbidity front as a reflectance level that ‘best’ separates the two reflectance regions. We analyzed the distribution of the front location over the 2014-2017 period, and found that the front location along the Uruguayan coast is more often located to the E of Montevideo, approximately 60% of the time, being the maximum eastward distance 143 km. On the other hand, we observed that the front could recede up to 70 km to the W of Montevideo. The turbidity front location along the Uruguayan coast presented statistically significant linear correlation with the Parana and Uruguay river discharges, with larger discharges being associated with positions further to the E. Regarding the wind, we observed as a general trend that positions to the W are associated with relatively weaker winds from all directions, while positions to the E show a larger scatter and are more frequently associated with stronger winds. We also observed a general trend in the data indicating that the front location along the north coast was particularly affected by winds coming from the SW and ENE directions.
dc.format.extent.es.fl_str_mv 2 p.
dc.format.mimetype.en.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Pedocchi, F., Maciel, F. y Santoro, P. "Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front" [en línea] EN: 15th International Conference on Cohesive Sediment Transport Processes, Istanbul, Turkey, 13-17 Oct., 2019. [S.l.] : INTERCOH, 2019. 2 p.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/26023
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.en.fl_str_mv INTERCOH
dc.relation.ispartof.en.fl_str_mv 15th International Conference on Cohesive Sediment Transport Processes, 13-17 Oct. 2019, Istanbul, Turkey.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Imágenes satelitales
MODIS
Frente de turbidez
Estuario
Modelo hidrosedimentológico
Teledetección
dc.title.none.fl_str_mv Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Both remote sensing and numerical modeling studies heavily rely on field data for calibration and validation, but they are seldom used to validate each other. In this work we used the turbidity front detected from satellite imagery to evaluate the performance of a numerical hydro-sedimentological model of the Rio de la Plata. The Rio de la Plata is a micro-tidal estuary located between Argentina and Uruguay in South America. It is approximately 280 km long and its width increases from 20 km at the inner part to 220 km at its mouth. Due to its large extension, satellite images are one of the few tools able to provide a synoptic view of the estuary. The estuary receives an annual mean flow of 22.000 m³/s from the Parana and Uruguay rivers, and 160x106 tons/yr of sediment, which are mostly cohesive sediments coming from the upper Parana River basin. The following data was available for studying the response of the system to the main forcings: daily discharges of the main tributaries from 2001 to 2017 (the mean discharge for the 2014-2017 period was 24250 m³/s); wind data every six hours from the European Centre for Medium-Range Weather Forecasts (ECMWF); CTD salinity measurements at two sites along the northern coast of the Rio de la Plata (just in front of Montevideo and approximately 40 km to the W). We used images from the MODIS-Aqua satellite mission from 2014 to 2017. The images have a spatial resolution of approximately 1 km and a daily time step, and we used the red channel reflectance (wavelength of 645 nm) to detect the turbidity front location. The turbid river water in the inner and intermediate regions of the estuary has high reflectance, while the clear seawater in the outer zone and continental shelf has negligible reflectance. This allowed us to implement an image-based, autonomous algorithm, defining the turbidity front as a reflectance level that ‘best’ separates the two reflectance regions. We analyzed the distribution of the front location over the 2014-2017 period, and found that the front location along the Uruguayan coast is more often located to the E of Montevideo, approximately 60% of the time, being the maximum eastward distance 143 km. On the other hand, we observed that the front could recede up to 70 km to the W of Montevideo. The turbidity front location along the Uruguayan coast presented statistically significant linear correlation with the Parana and Uruguay river discharges, with larger discharges being associated with positions further to the E. Regarding the wind, we observed as a general trend that positions to the W are associated with relatively weaker winds from all directions, while positions to the E show a larger scatter and are more frequently associated with stronger winds. We also observed a general trend in the data indicating that the front location along the north coast was particularly affected by winds coming from the SW and ENE directions.
eu_rights_str_mv openAccess
format article
id COLIBRI_c242974f968939ea76c7df1a0e8f772e
identifier_str_mv Pedocchi, F., Maciel, F. y Santoro, P. "Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front" [en línea] EN: 15th International Conference on Cohesive Sediment Transport Processes, Istanbul, Turkey, 13-17 Oct., 2019. [S.l.] : INTERCOH, 2019. 2 p.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/26023
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Pedocchi Francisco, Universidad de la República (Uruguay). Facultad de Ingeniería.Maciel Fernanda, Universidad de la República (Uruguay). Facultad de IngenieríaSantoro Pablo E., Universidad de la República (Uruguay). Facultad de Ingeniería.Río de la Plata2020-12-02T13:10:47Z2020-12-02T13:10:47Z2019Pedocchi, F., Maciel, F. y Santoro, P. "Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front" [en línea] EN: 15th International Conference on Cohesive Sediment Transport Processes, Istanbul, Turkey, 13-17 Oct., 2019. [S.l.] : INTERCOH, 2019. 2 p.https://hdl.handle.net/20.500.12008/26023Both remote sensing and numerical modeling studies heavily rely on field data for calibration and validation, but they are seldom used to validate each other. In this work we used the turbidity front detected from satellite imagery to evaluate the performance of a numerical hydro-sedimentological model of the Rio de la Plata. The Rio de la Plata is a micro-tidal estuary located between Argentina and Uruguay in South America. It is approximately 280 km long and its width increases from 20 km at the inner part to 220 km at its mouth. Due to its large extension, satellite images are one of the few tools able to provide a synoptic view of the estuary. The estuary receives an annual mean flow of 22.000 m³/s from the Parana and Uruguay rivers, and 160x106 tons/yr of sediment, which are mostly cohesive sediments coming from the upper Parana River basin. The following data was available for studying the response of the system to the main forcings: daily discharges of the main tributaries from 2001 to 2017 (the mean discharge for the 2014-2017 period was 24250 m³/s); wind data every six hours from the European Centre for Medium-Range Weather Forecasts (ECMWF); CTD salinity measurements at two sites along the northern coast of the Rio de la Plata (just in front of Montevideo and approximately 40 km to the W). We used images from the MODIS-Aqua satellite mission from 2014 to 2017. The images have a spatial resolution of approximately 1 km and a daily time step, and we used the red channel reflectance (wavelength of 645 nm) to detect the turbidity front location. The turbid river water in the inner and intermediate regions of the estuary has high reflectance, while the clear seawater in the outer zone and continental shelf has negligible reflectance. This allowed us to implement an image-based, autonomous algorithm, defining the turbidity front as a reflectance level that ‘best’ separates the two reflectance regions. We analyzed the distribution of the front location over the 2014-2017 period, and found that the front location along the Uruguayan coast is more often located to the E of Montevideo, approximately 60% of the time, being the maximum eastward distance 143 km. On the other hand, we observed that the front could recede up to 70 km to the W of Montevideo. The turbidity front location along the Uruguayan coast presented statistically significant linear correlation with the Parana and Uruguay river discharges, with larger discharges being associated with positions further to the E. Regarding the wind, we observed as a general trend that positions to the W are associated with relatively weaker winds from all directions, while positions to the E show a larger scatter and are more frequently associated with stronger winds. We also observed a general trend in the data indicating that the front location along the north coast was particularly affected by winds coming from the SW and ENE directions.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2020-11-30T18:14:54Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) PMS19.pdf: 248665 bytes, checksum: f109dd2428b476d43de9426ac411bb46 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-12-01T18:39:38Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) PMS19.pdf: 248665 bytes, checksum: f109dd2428b476d43de9426ac411bb46 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-12-02T13:10:47Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) PMS19.pdf: 248665 bytes, checksum: f109dd2428b476d43de9426ac411bb46 (MD5) Previous issue date: 20192 p.application/pdfenengINTERCOH15th International Conference on Cohesive Sediment Transport Processes, 13-17 Oct. 2019, Istanbul, Turkey.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Imágenes satelitalesMODISFrente de turbidezEstuarioModelo hidrosedimentológicoTeledetecciónUsing satellite imagery for studying the dynamics of the Rio de la Plata turbidity frontArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPedocchi, FranciscoMaciel, FernandaSantoro, Pablo E.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/26023/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/26023/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838695http://localhost:8080/xmlui/bitstream/20.500.12008/26023/3/license_textbb66dcbdf7fd7aa7bce25f3cf50d2042MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/26023/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALPMS19.pdfPMS19.pdfapplication/pdf248665http://localhost:8080/xmlui/bitstream/20.500.12008/26023/1/PMS19.pdff109dd2428b476d43de9426ac411bb46MD5120.500.12008/260232020-12-02 10:13:13.555oai:colibri.udelar.edu.uy:20.500.12008/26023VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:32:43.755453COLIBRI - Universidad de la Repúblicafalse
spellingShingle Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
Pedocchi, Francisco
Imágenes satelitales
MODIS
Frente de turbidez
Estuario
Modelo hidrosedimentológico
Teledetección
status_str publishedVersion
title Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
title_full Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
title_fullStr Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
title_full_unstemmed Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
title_short Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
title_sort Using satellite imagery for studying the dynamics of the Rio de la Plata turbidity front
topic Imágenes satelitales
MODIS
Frente de turbidez
Estuario
Modelo hidrosedimentológico
Teledetección
url https://hdl.handle.net/20.500.12008/26023