The DUDE framework for continuous tone images denoising
Resumen:
This paper discusses the challenges of applying the DUDE framework to continuous tone images and the tools used to address these challenges. As in lossless image compression, a key component of the DUDE framework is the determination of a probability distribution for samples of the input (noisy) image, conditioned on their contexts. Thus, we can leverage from tools developed and tested in the context of lossless compression for determining such distributions, together with tools that are specific to the assumptions of the denoising application. These tools combine with the DUDE principles into a framework that yields powerful and practical denoisers for continuous tone images corrupted by a variety of noise processes.
2005 | |
Image denoising Image coding Data compression |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21192 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
Resultados similares
-
The iDUDE framework for grayscale image denoising
Autor(es):: Motta, G
Fecha de publicación:: (2011) -
Interleaved quantization for near-lossless image coding
Autor(es):: Ramírez Paulino, Ignacio
Fecha de publicación:: (2015) -
The DUDE for continuous tone images
Autor(es):: Ramirez, Ignacio
Fecha de publicación:: (2005) -
Joint denoising and decompression : a patch-based bayesian approach
Autor(es):: Preciozzi, Javier
Fecha de publicación:: (2017) -
Visualization of high dynamic range images
Autor(es):: Pardo, Alvaro
Fecha de publicación:: (2002)