Guided classification measurement of body condition in beef cows

Guía de clasificación de la condición corporal en vacas de cría

Guia de classificação da condição corporal em vacas de corte

Espasandin, Ana Carolina - Larracharte Cardoso, Andrea Gimena - Pérez López, Nicolás

Editor(es): Luzardo, Santiago

Resumen:

The use of predictive techniques based on image acquisition at field level is presented to improve livestock production. With this, the farmer can plan the management of the herd and the need for supplemental feeding. The use of the Body Condition Score (BCS) measured by visual assessment has been proposed as a method of subjective evaluation of the nutritional status of cattle. Studies show that a good BCS at calving allows increases in the order of 10 to 15% in the following pregnancy rate of the herd. This increase has a significant impact on farm productivity. Although the benefits of the visual assessment scale are recognized, the percentage of breeders using this tool is still low, the main reason being the lack of trained raters to record the BCS. The objective of this study was to develop a practical, repetitive, and non-invasive method to evaluate BCS through a guided grading process using images taken in the field. The results show that the BCS determination method proposed in this paper is presented as a simple and economical tool to evaluate BCS, so that it can be accepted by the breeder for its simplicity and benefits. Additionally, it can serve as a tutorial for the acquisition of experience in calibrating BCS in breeding cows.


El uso de técnicas predictivas basadas en la toma de imágenes de campo es propuesto como un método de auxilio en la cría animal, en donde el productor podría planificar el manejo de la nutrición del rodeo. La condición corporal (CC) medida en vacas de cría mediante apreciación visual ha sido propuesta como un buen estimador del estado nutricional del rodeo. Estudios previos demuestran que en vacas con mayores CC al parto la preñez al siguiente servicio se incrementa de 10 a 15%, teniendo este resultado gran impacto en la producción de los sistemas. Aunque se reconocen los beneficios de la escala de CC, el porcentaje de criadores que utilizan esta herramienta sigue siendo bajo, siendo la razón principal la falta de calificadores formados para registrarla. El objetivo de este estudio fue desarrollar un método práctico, repetitivo y no invasivo para evaluar la CC mediante un proceso de calificación guiada, utilizando imágenes tomadas en el campo. Los resultados muestran que el método de determinación de la CC propuesto se comporta como una herramienta sencilla y económica para evaluar el estado nutricional, por lo que puede ser aceptado por el criador dada su sencillez y los beneficios obtenidos. Adicionalmente, esta herramienta también puede constituir un tutorial para la generación de experiencia en la calificación de la CC en vacas de cría.


O uso de técnicas preditivas baseadas em imagens de campo é proposto como um auxílio na criação de animais, onde o produtor poderia planejar o manejo nutricional do rebanho. A condição corporal (CC) medida em vacas mediante avaliação visual foi proposta como um bom estimador do estado nutricional do rebanho. Estudos prévios mostram que em vacas com maiores CC ao momento do parto, a gravidez no próximo serviço é aumentada de 10 a 15%, tendo um grande impacto na produtividade dos sistemas. Embora os benefícios da escala CC sejam reconhecidos, a percentagem de criadores que adotam esta ferramenta ainda é baixa, sendo a principal razão a falta de avaliadores treinados para registrá-la. O objetivo deste estudo foi desenvolver um método prático, repetível e não-invasivo para avaliar a CC através de um processo guiado, utilizando imagens tomadas no campo. Os resultados mostram que o método de determinação proposto comporta-se como uma ferramenta simples e barata para avaliar o estado nutricional, podendo ser aceito pelo criador dada à sua simplicidade assim como aos benefícios obtidos. Além disso, esta ferramenta também pode constituir um tutorial para a geração de experiência na qualificação de CC em vacas reprodutoras.


Detalles Bibliográficos
2023
Beef Cattle
Body Condition Score
Condição Corporal
Condición Corporal
Digital Imaging
Imágenes Digitales
Imagens Digitais
Information Technology
Tecnologia da Informação
Tecnología de la Información
Vacas de Corte
Vacas de Cría
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/39780
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807523264217481216
author Espasandin, Ana Carolina
author2 Larracharte Cardoso, Andrea Gimena
Pérez López, Nicolás
author2_role author
author
author_facet Espasandin, Ana Carolina
Larracharte Cardoso, Andrea Gimena
Pérez López, Nicolás
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
aaf2791046b84599cb1e37492908be62
9fdbed07f52437945402c4e70fa4773e
a3de9eafe582f7c22b0eda8be9f8b549
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/39780/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/39780/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/39780/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/39780/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/39780/1/2730-5066-1165.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Espasandin Ana Carolina, Universidad de la República, Facultad de Agronomía, Montevideo, Uruguay https://orcid.org/0000-0003-2233-4290
Larracharte Cardoso Andrea Gimena, Universidad de la República, Facultad de Agronomía, Montevideo, Uruguay https://orcid.org/0000-0002-3934-1078
Pérez López Nicolás, Universidad de la República, Facultad de Ingeniería, Montevideo, Uruguay https://orcid.org/0000-0002-8043-5383
dc.creator.editor.none.fl_str_mv Luzardo, Santiago
dc.creator.none.fl_str_mv Espasandin, Ana Carolina
Larracharte Cardoso, Andrea Gimena
Pérez López, Nicolás
dc.date.accessioned.none.fl_str_mv 2023-09-04T15:04:59Z
dc.date.available.none.fl_str_mv 2023-09-04T15:04:59Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv The use of predictive techniques based on image acquisition at field level is presented to improve livestock production. With this, the farmer can plan the management of the herd and the need for supplemental feeding. The use of the Body Condition Score (BCS) measured by visual assessment has been proposed as a method of subjective evaluation of the nutritional status of cattle. Studies show that a good BCS at calving allows increases in the order of 10 to 15% in the following pregnancy rate of the herd. This increase has a significant impact on farm productivity. Although the benefits of the visual assessment scale are recognized, the percentage of breeders using this tool is still low, the main reason being the lack of trained raters to record the BCS. The objective of this study was to develop a practical, repetitive, and non-invasive method to evaluate BCS through a guided grading process using images taken in the field. The results show that the BCS determination method proposed in this paper is presented as a simple and economical tool to evaluate BCS, so that it can be accepted by the breeder for its simplicity and benefits. Additionally, it can serve as a tutorial for the acquisition of experience in calibrating BCS in breeding cows.
El uso de técnicas predictivas basadas en la toma de imágenes de campo es propuesto como un método de auxilio en la cría animal, en donde el productor podría planificar el manejo de la nutrición del rodeo. La condición corporal (CC) medida en vacas de cría mediante apreciación visual ha sido propuesta como un buen estimador del estado nutricional del rodeo. Estudios previos demuestran que en vacas con mayores CC al parto la preñez al siguiente servicio se incrementa de 10 a 15%, teniendo este resultado gran impacto en la producción de los sistemas. Aunque se reconocen los beneficios de la escala de CC, el porcentaje de criadores que utilizan esta herramienta sigue siendo bajo, siendo la razón principal la falta de calificadores formados para registrarla. El objetivo de este estudio fue desarrollar un método práctico, repetitivo y no invasivo para evaluar la CC mediante un proceso de calificación guiada, utilizando imágenes tomadas en el campo. Los resultados muestran que el método de determinación de la CC propuesto se comporta como una herramienta sencilla y económica para evaluar el estado nutricional, por lo que puede ser aceptado por el criador dada su sencillez y los beneficios obtenidos. Adicionalmente, esta herramienta también puede constituir un tutorial para la generación de experiencia en la calificación de la CC en vacas de cría.
O uso de técnicas preditivas baseadas em imagens de campo é proposto como um auxílio na criação de animais, onde o produtor poderia planejar o manejo nutricional do rebanho. A condição corporal (CC) medida em vacas mediante avaliação visual foi proposta como um bom estimador do estado nutricional do rebanho. Estudos prévios mostram que em vacas com maiores CC ao momento do parto, a gravidez no próximo serviço é aumentada de 10 a 15%, tendo um grande impacto na produtividade dos sistemas. Embora os benefícios da escala CC sejam reconhecidos, a percentagem de criadores que adotam esta ferramenta ainda é baixa, sendo a principal razão a falta de avaliadores treinados para registrá-la. O objetivo deste estudo foi desenvolver um método prático, repetível e não-invasivo para avaliar a CC através de um processo guiado, utilizando imagens tomadas no campo. Os resultados mostram que o método de determinação proposto comporta-se como uma ferramenta simples e barata para avaliar o estado nutricional, podendo ser aceito pelo criador dada à sua simplicidade assim como aos benefícios obtidos. Além disso, esta ferramenta também pode constituir um tutorial para a geração de experiência na qualificação de CC em vacas reprodutoras.
dc.format.extent.es.fl_str_mv e1165
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Espasandin, A. C., Larracharte Cardoso, A. G., & Pérez López, N. (2023). Guided classification measurement of body condition in beef cows. Agrociencia Uruguay, 27, e1165. https://doi.org/10.31285/AGRO.27.1165
dc.identifier.doi.none.fl_str_mv 10.31285/AGRO.27.1165
dc.identifier.issn.none.fl_str_mv 2730-5066
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/39780
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Facultad de Agronomía, Universidad de la República - INIA
dc.relation.ispartof.es.fl_str_mv Agrociencia Uruguay, 2023 27:e1165
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Beef Cattle
Body Condition Score
Condição Corporal
Condición Corporal
Digital Imaging
Imágenes Digitales
Imagens Digitais
Information Technology
Tecnologia da Informação
Tecnología de la Información
Vacas de Corte
Vacas de Cría
dc.title.none.fl_str_mv Guided classification measurement of body condition in beef cows
Guía de clasificación de la condición corporal en vacas de cría
Guia de classificação da condição corporal em vacas de corte
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description The use of predictive techniques based on image acquisition at field level is presented to improve livestock production. With this, the farmer can plan the management of the herd and the need for supplemental feeding. The use of the Body Condition Score (BCS) measured by visual assessment has been proposed as a method of subjective evaluation of the nutritional status of cattle. Studies show that a good BCS at calving allows increases in the order of 10 to 15% in the following pregnancy rate of the herd. This increase has a significant impact on farm productivity. Although the benefits of the visual assessment scale are recognized, the percentage of breeders using this tool is still low, the main reason being the lack of trained raters to record the BCS. The objective of this study was to develop a practical, repetitive, and non-invasive method to evaluate BCS through a guided grading process using images taken in the field. The results show that the BCS determination method proposed in this paper is presented as a simple and economical tool to evaluate BCS, so that it can be accepted by the breeder for its simplicity and benefits. Additionally, it can serve as a tutorial for the acquisition of experience in calibrating BCS in breeding cows.
eu_rights_str_mv openAccess
format article
id COLIBRI_bfc03df87726dfd83b94226741c7e27c
identifier_str_mv Espasandin, A. C., Larracharte Cardoso, A. G., & Pérez López, N. (2023). Guided classification measurement of body condition in beef cows. Agrociencia Uruguay, 27, e1165. https://doi.org/10.31285/AGRO.27.1165
2730-5066
10.31285/AGRO.27.1165
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/39780
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Espasandin Ana Carolina, Universidad de la República, Facultad de Agronomía, Montevideo, Uruguay https://orcid.org/0000-0003-2233-4290Larracharte Cardoso Andrea Gimena, Universidad de la República, Facultad de Agronomía, Montevideo, Uruguay https://orcid.org/0000-0002-3934-1078Pérez López Nicolás, Universidad de la República, Facultad de Ingeniería, Montevideo, Uruguay https://orcid.org/0000-0002-8043-53832023-09-04T15:04:59Z2023-09-04T15:04:59Z2023Espasandin, A. C., Larracharte Cardoso, A. G., & Pérez López, N. (2023). Guided classification measurement of body condition in beef cows. Agrociencia Uruguay, 27, e1165. https://doi.org/10.31285/AGRO.27.11652730-5066https://hdl.handle.net/20.500.12008/3978010.31285/AGRO.27.1165The use of predictive techniques based on image acquisition at field level is presented to improve livestock production. With this, the farmer can plan the management of the herd and the need for supplemental feeding. The use of the Body Condition Score (BCS) measured by visual assessment has been proposed as a method of subjective evaluation of the nutritional status of cattle. Studies show that a good BCS at calving allows increases in the order of 10 to 15% in the following pregnancy rate of the herd. This increase has a significant impact on farm productivity. Although the benefits of the visual assessment scale are recognized, the percentage of breeders using this tool is still low, the main reason being the lack of trained raters to record the BCS. The objective of this study was to develop a practical, repetitive, and non-invasive method to evaluate BCS through a guided grading process using images taken in the field. The results show that the BCS determination method proposed in this paper is presented as a simple and economical tool to evaluate BCS, so that it can be accepted by the breeder for its simplicity and benefits. Additionally, it can serve as a tutorial for the acquisition of experience in calibrating BCS in breeding cows.El uso de técnicas predictivas basadas en la toma de imágenes de campo es propuesto como un método de auxilio en la cría animal, en donde el productor podría planificar el manejo de la nutrición del rodeo. La condición corporal (CC) medida en vacas de cría mediante apreciación visual ha sido propuesta como un buen estimador del estado nutricional del rodeo. Estudios previos demuestran que en vacas con mayores CC al parto la preñez al siguiente servicio se incrementa de 10 a 15%, teniendo este resultado gran impacto en la producción de los sistemas. Aunque se reconocen los beneficios de la escala de CC, el porcentaje de criadores que utilizan esta herramienta sigue siendo bajo, siendo la razón principal la falta de calificadores formados para registrarla. El objetivo de este estudio fue desarrollar un método práctico, repetitivo y no invasivo para evaluar la CC mediante un proceso de calificación guiada, utilizando imágenes tomadas en el campo. Los resultados muestran que el método de determinación de la CC propuesto se comporta como una herramienta sencilla y económica para evaluar el estado nutricional, por lo que puede ser aceptado por el criador dada su sencillez y los beneficios obtenidos. Adicionalmente, esta herramienta también puede constituir un tutorial para la generación de experiencia en la calificación de la CC en vacas de cría.O uso de técnicas preditivas baseadas em imagens de campo é proposto como um auxílio na criação de animais, onde o produtor poderia planejar o manejo nutricional do rebanho. A condição corporal (CC) medida em vacas mediante avaliação visual foi proposta como um bom estimador do estado nutricional do rebanho. Estudos prévios mostram que em vacas com maiores CC ao momento do parto, a gravidez no próximo serviço é aumentada de 10 a 15%, tendo um grande impacto na produtividade dos sistemas. Embora os benefícios da escala CC sejam reconhecidos, a percentagem de criadores que adotam esta ferramenta ainda é baixa, sendo a principal razão a falta de avaliadores treinados para registrá-la. O objetivo deste estudo foi desenvolver um método prático, repetível e não-invasivo para avaliar a CC através de um processo guiado, utilizando imagens tomadas no campo. Os resultados mostram que o método de determinação proposto comporta-se como uma ferramenta simples e barata para avaliar o estado nutricional, podendo ser aceito pelo criador dada à sua simplicidade assim como aos benefícios obtidos. Além disso, esta ferramenta também pode constituir um tutorial para a geração de experiência na qualificação de CC em vacas reprodutoras.Submitted by Colombo Cabanas Stephanie (colombo@fagro.edu.uy) on 2023-09-02T12:57:55Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 2730-5066-1165.pdf: 1315393 bytes, checksum: a3de9eafe582f7c22b0eda8be9f8b549 (MD5)Approved for entry into archive by Muniz Andrea (rosmeri8@hotmail.com) on 2023-09-04T14:53:29Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 2730-5066-1165.pdf: 1315393 bytes, checksum: a3de9eafe582f7c22b0eda8be9f8b549 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-09-04T15:04:59Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 2730-5066-1165.pdf: 1315393 bytes, checksum: a3de9eafe582f7c22b0eda8be9f8b549 (MD5) Previous issue date: 2023e1165application/pdfenengFacultad de Agronomía, Universidad de la República - INIAAgrociencia Uruguay, 2023 27:e1165Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Beef CattleBody Condition ScoreCondição CorporalCondición CorporalDigital ImagingImágenes DigitalesImagens DigitaisInformation TechnologyTecnologia da InformaçãoTecnología de la InformaciónVacas de CorteVacas de CríaGuided classification measurement of body condition in beef cowsGuía de clasificación de la condición corporal en vacas de críaGuia de classificação da condição corporal em vacas de corteArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaEspasandin, Ana CarolinaLarracharte Cardoso, Andrea GimenaPérez López, NicolásLuzardo, SantiagoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/39780/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/39780/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838534http://localhost:8080/xmlui/bitstream/20.500.12008/39780/3/license_textaaf2791046b84599cb1e37492908be62MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/39780/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL2730-5066-1165.pdf2730-5066-1165.pdfapplication/pdf1315393http://localhost:8080/xmlui/bitstream/20.500.12008/39780/1/2730-5066-1165.pdfa3de9eafe582f7c22b0eda8be9f8b549MD5120.500.12008/397802023-09-04 12:04:59.296oai:colibri.udelar.edu.uy:20.500.12008/39780VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:47:56.794171COLIBRI - Universidad de la Repúblicafalse
spellingShingle Guided classification measurement of body condition in beef cows
Espasandin, Ana Carolina
Beef Cattle
Body Condition Score
Condição Corporal
Condición Corporal
Digital Imaging
Imágenes Digitales
Imagens Digitais
Information Technology
Tecnologia da Informação
Tecnología de la Información
Vacas de Corte
Vacas de Cría
status_str publishedVersion
title Guided classification measurement of body condition in beef cows
title_full Guided classification measurement of body condition in beef cows
title_fullStr Guided classification measurement of body condition in beef cows
title_full_unstemmed Guided classification measurement of body condition in beef cows
title_short Guided classification measurement of body condition in beef cows
title_sort Guided classification measurement of body condition in beef cows
topic Beef Cattle
Body Condition Score
Condição Corporal
Condición Corporal
Digital Imaging
Imágenes Digitales
Imagens Digitais
Information Technology
Tecnologia da Informação
Tecnología de la Información
Vacas de Corte
Vacas de Cría
url https://hdl.handle.net/20.500.12008/39780