Finite element approximation of fractional Neumann problems
Resumen:
In this paper, we consider approximations of Neumann problems for the integral fractional Laplacian by continuous, piecewise linear finite elements. We analyze the weak formulation of such problems, including their well-posedness and asymptotic behavior of solutions. We address the convergence of the finite element discretizations and discuss the implementation of the method. Finally, we present several numerical experiments in one- and two-dimensional domains that illustrate the method’s performance as well as certain properties of solutions.
2022 | |
Numerical analysis Neumann boundary condition Fractional Laplacian |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38861 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Finite element algorithms for nonlocal minimal graphs
Autor(es):: Borthagaray, Juan Pablo
Fecha de publicación:: (2022) -
Fractional iterated Ornstein-Uhlenbeck Processes
Autor(es):: Kalemkerian, Juan
Fecha de publicación:: (2019) -
Modeling the arterial wall mechanics using a novel high-order viscoelastic fractional element
Autor(es):: Pérez Zerpa, J.M
Fecha de publicación:: (2015) -
Average conditioning of underdetermined polynomial systems
Autor(es):: Carrasco, Federico
Fecha de publicación:: (2023) -
Modelling a continuous time series with FOU(p) processes
Autor(es):: Kalemkerian, Juan
Fecha de publicación:: (2022)