Modeling onset spectral features for discrimination of drum sounds
Resumen:
Motivated by practical problems related to ongoing research on Candombe drumming (a popular afro-rooted rhythm from Uruguay), this paper proposes an approach for recognizing drum sounds in audio signals that models for sound classification the same audio spectral features employed in onset detection. Among the reported experiments involving recordings of real performances, one aims at finding the predominant Candombe drum heard in an audio file, while the other attempts to identify those temporal segments within a performance when a given sound pattern is played. The attained results are promising and suggest many ideas for future research. Keywords: Audio signal processing · Machine learning applications · Musical instrument recognition · Percussion music · Candombe drumming
2015 | |
Audio signal processing Machine learning applications Musical instrument recognition Percussion music Candombe drumming Procesamiento de Señales |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42683 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
A multimodal approach for percussion music transcription from audio and video
Autor(es):: Marenco, Bernardo
Fecha de publicación:: (2015) -
Tecnologías para el análisis del contenido musical de grabaciones de audio
Autor(es):: Rocamora, Martín
Fecha de publicación:: (2014) -
Not afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding
Autor(es):: Sapiro, Guillermo
Fecha de publicación:: (2017) -
Web application attacks detection using machine learning techniques
Autor(es):: Betarte, Gustavo
Fecha de publicación:: (2018) -
Enhancing web application attack detection using machine learning
Autor(es):: Martínez, Rodrigo
Fecha de publicación:: (2018)