Algoritmos de aprendizaje automático con aplicación a enjambres de robots

Agorio, Leopoldo

Supervisor(es): Bazerque, Juan Andrés

Resumen:

Los sistemas robóticos de enjambre o de múltiples agentes constituyen un área de investigación en creciente desarrollo. Para proveer infraestructura inalámbrica a demanda es necesario desplegar un equipo secundario de robots que garanticen la conectividad del enjambre. En este trabajo explicamos un algoritmo de posicionamiento óptimo para este equipo de robots, consistente en una etapa de optimización convexa sobre un modelo de canal probabilístico y una siguiente etapa de maximización de la conectividad de un grafo Laplaciano. Para mostrar la ventaja de esta formulación matemática, llevamos a cabo tanto simulaciones como experimentos que fueron realizados con una flota de 10 Vehículos Aéreos no Tripulados (UAV por sus siglas en inglés) -ensamblados y configurados por nuestro grupo de investigación- basados en el modelo DJI Flame-Wheel y equipados con mini-computadoras Intel NUC a bordo y conectividad Wi-Fi. Para los experimentos realizados, los UAVs establecieron una red ad-hoc a través de nodos ROS multi-master en sistema operativo Ubuntu 18. Existe a su vez otra familia de algoritmos autónomos de creciente interés conocida como aprendizaje por recompensas o Reinforcement Learning (RL), en los que el control a aplicar surge a partir de optimizar una señal de recompensa. En esta tesis estudiamos un problema de monitoreo, formulado a partir de restricciones de ocupación de regiones a monitorear por uno o múltiples agentes, que se lleva a un problema de RL en el que las variables duales actúan como señal de recompensa. Para resolver el problema en el caso de un único agente monitoreando varias regiones, diseñamos una parametrización por medio de una red neuronal que procesa en paralelo las variables primales y las duales. Con esta novedad estructural, la red aprende a elegir políticas de navegación en función del grado de satisfacción de las restricciones, que se observa en tiempo real a través de las variables duales. Para el caso de múltiples agentes, simulamos una versión simplificada del problema con un espacio de estados discreto y dos agentes, e imponiendo que los agentes tengan políticas distribuidas logramos un desempeño comparable al de una política centralizada.


Swarm or multi-agent robotic systems are a growing area of research. To provide wireless infrastructure on demand, it is necessary to deploy a secondary team of robots that guarantee the connectivity of the swarm. In this paper we explain an optimal positioning algorithm for this team of robots, consisting of a convex optimization stage on a probabilistic channel model and a subsequent connectivity maximization stage of a Laplacian graph. To show the advantage of this mathematical formulation, we carried out both simulations and experiments that were carried out with a fleet of 10 Unmanned Aerial Vehicles (UAV) -assembled and con gured by our research group- based on the model DJI Flame-Wheel and equipped with onboard Intel NUC mini-computers and Wi-Fi connectivity. For the experiments carried out, the UAVs established an ad-hoc network through ROS multi-master nodes in the Ubuntu 18 operating system. There is also another family of autonomous algorithms of growing interest known as Reinforcement Learning (RL), in which the control to be applied arises from optimizing a reward signal. In this thesis we study a monitoring problem, formulated from the occupation restrictions of regions to be monitored by one or multiple agents, which leads to an RL problem in which the dual variables act as a reward signal. To solve the problem in the case of a single agent monitoring several regions, we designed a parameterization through a neural network that processes the primal and dual variables in parallel. With this structural novelty, the network learns to choose navigation policies based on the degree of satisfaction of the constraints, which is observed in real time through the dual variables. For the multi-agent case, we simulate a simpli ed version of the problem with a discrete state space and two agents, and by imposing that the agents have distributed policies, we achieve performance comparable to that of a centralized policy.


Detalles Bibliográficos
2022
Beca de Posgrado de la CAP, UdelaR
Aprendizaje Automático
Robótica Autónoma
Robótica Multi-Agente
Redes Neuronales
Optimización Convexa
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/33397
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523179500929024
author Agorio, Leopoldo
author_facet Agorio, Leopoldo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
a85c254f143e307d9b22c23ce71a8a91
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/33397/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/33397/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/33397/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/33397/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/33397/1/Ago22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Agorio Leopoldo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Bazerque, Juan Andrés
dc.creator.none.fl_str_mv Agorio, Leopoldo
dc.date.accessioned.none.fl_str_mv 2022-08-29T17:20:47Z
dc.date.available.none.fl_str_mv 2022-08-29T17:20:47Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Los sistemas robóticos de enjambre o de múltiples agentes constituyen un área de investigación en creciente desarrollo. Para proveer infraestructura inalámbrica a demanda es necesario desplegar un equipo secundario de robots que garanticen la conectividad del enjambre. En este trabajo explicamos un algoritmo de posicionamiento óptimo para este equipo de robots, consistente en una etapa de optimización convexa sobre un modelo de canal probabilístico y una siguiente etapa de maximización de la conectividad de un grafo Laplaciano. Para mostrar la ventaja de esta formulación matemática, llevamos a cabo tanto simulaciones como experimentos que fueron realizados con una flota de 10 Vehículos Aéreos no Tripulados (UAV por sus siglas en inglés) -ensamblados y configurados por nuestro grupo de investigación- basados en el modelo DJI Flame-Wheel y equipados con mini-computadoras Intel NUC a bordo y conectividad Wi-Fi. Para los experimentos realizados, los UAVs establecieron una red ad-hoc a través de nodos ROS multi-master en sistema operativo Ubuntu 18. Existe a su vez otra familia de algoritmos autónomos de creciente interés conocida como aprendizaje por recompensas o Reinforcement Learning (RL), en los que el control a aplicar surge a partir de optimizar una señal de recompensa. En esta tesis estudiamos un problema de monitoreo, formulado a partir de restricciones de ocupación de regiones a monitorear por uno o múltiples agentes, que se lleva a un problema de RL en el que las variables duales actúan como señal de recompensa. Para resolver el problema en el caso de un único agente monitoreando varias regiones, diseñamos una parametrización por medio de una red neuronal que procesa en paralelo las variables primales y las duales. Con esta novedad estructural, la red aprende a elegir políticas de navegación en función del grado de satisfacción de las restricciones, que se observa en tiempo real a través de las variables duales. Para el caso de múltiples agentes, simulamos una versión simplificada del problema con un espacio de estados discreto y dos agentes, e imponiendo que los agentes tengan políticas distribuidas logramos un desempeño comparable al de una política centralizada.
Swarm or multi-agent robotic systems are a growing area of research. To provide wireless infrastructure on demand, it is necessary to deploy a secondary team of robots that guarantee the connectivity of the swarm. In this paper we explain an optimal positioning algorithm for this team of robots, consisting of a convex optimization stage on a probabilistic channel model and a subsequent connectivity maximization stage of a Laplacian graph. To show the advantage of this mathematical formulation, we carried out both simulations and experiments that were carried out with a fleet of 10 Unmanned Aerial Vehicles (UAV) -assembled and con gured by our research group- based on the model DJI Flame-Wheel and equipped with onboard Intel NUC mini-computers and Wi-Fi connectivity. For the experiments carried out, the UAVs established an ad-hoc network through ROS multi-master nodes in the Ubuntu 18 operating system. There is also another family of autonomous algorithms of growing interest known as Reinforcement Learning (RL), in which the control to be applied arises from optimizing a reward signal. In this thesis we study a monitoring problem, formulated from the occupation restrictions of regions to be monitored by one or multiple agents, which leads to an RL problem in which the dual variables act as a reward signal. To solve the problem in the case of a single agent monitoring several regions, we designed a parameterization through a neural network that processes the primal and dual variables in parallel. With this structural novelty, the network learns to choose navigation policies based on the degree of satisfaction of the constraints, which is observed in real time through the dual variables. For the multi-agent case, we simulate a simpli ed version of the problem with a discrete state space and two agents, and by imposing that the agents have distributed policies, we achieve performance comparable to that of a centralized policy.
dc.description.sponsorship.none.fl_txt_mv Beca de Posgrado de la CAP, UdelaR
dc.format.extent.es.fl_str_mv 75 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Agorio, L. Algoritmos de aprendizaje automático con aplicación a enjambres de robots [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2022.
dc.identifier.issn.none.fl_str_mv 1688-2806
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/33397
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Aprendizaje Automático
Robótica Autónoma
Robótica Multi-Agente
Redes Neuronales
Optimización Convexa
dc.title.none.fl_str_mv Algoritmos de aprendizaje automático con aplicación a enjambres de robots
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Los sistemas robóticos de enjambre o de múltiples agentes constituyen un área de investigación en creciente desarrollo. Para proveer infraestructura inalámbrica a demanda es necesario desplegar un equipo secundario de robots que garanticen la conectividad del enjambre. En este trabajo explicamos un algoritmo de posicionamiento óptimo para este equipo de robots, consistente en una etapa de optimización convexa sobre un modelo de canal probabilístico y una siguiente etapa de maximización de la conectividad de un grafo Laplaciano. Para mostrar la ventaja de esta formulación matemática, llevamos a cabo tanto simulaciones como experimentos que fueron realizados con una flota de 10 Vehículos Aéreos no Tripulados (UAV por sus siglas en inglés) -ensamblados y configurados por nuestro grupo de investigación- basados en el modelo DJI Flame-Wheel y equipados con mini-computadoras Intel NUC a bordo y conectividad Wi-Fi. Para los experimentos realizados, los UAVs establecieron una red ad-hoc a través de nodos ROS multi-master en sistema operativo Ubuntu 18. Existe a su vez otra familia de algoritmos autónomos de creciente interés conocida como aprendizaje por recompensas o Reinforcement Learning (RL), en los que el control a aplicar surge a partir de optimizar una señal de recompensa. En esta tesis estudiamos un problema de monitoreo, formulado a partir de restricciones de ocupación de regiones a monitorear por uno o múltiples agentes, que se lleva a un problema de RL en el que las variables duales actúan como señal de recompensa. Para resolver el problema en el caso de un único agente monitoreando varias regiones, diseñamos una parametrización por medio de una red neuronal que procesa en paralelo las variables primales y las duales. Con esta novedad estructural, la red aprende a elegir políticas de navegación en función del grado de satisfacción de las restricciones, que se observa en tiempo real a través de las variables duales. Para el caso de múltiples agentes, simulamos una versión simplificada del problema con un espacio de estados discreto y dos agentes, e imponiendo que los agentes tengan políticas distribuidas logramos un desempeño comparable al de una política centralizada.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_bc31d3ce6b251dd3e84eea7852725a10
identifier_str_mv Agorio, L. Algoritmos de aprendizaje automático con aplicación a enjambres de robots [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2022.
1688-2806
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/33397
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Agorio Leopoldo, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-08-29T17:20:47Z2022-08-29T17:20:47Z2022Agorio, L. Algoritmos de aprendizaje automático con aplicación a enjambres de robots [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2022.1688-2806https://hdl.handle.net/20.500.12008/33397Los sistemas robóticos de enjambre o de múltiples agentes constituyen un área de investigación en creciente desarrollo. Para proveer infraestructura inalámbrica a demanda es necesario desplegar un equipo secundario de robots que garanticen la conectividad del enjambre. En este trabajo explicamos un algoritmo de posicionamiento óptimo para este equipo de robots, consistente en una etapa de optimización convexa sobre un modelo de canal probabilístico y una siguiente etapa de maximización de la conectividad de un grafo Laplaciano. Para mostrar la ventaja de esta formulación matemática, llevamos a cabo tanto simulaciones como experimentos que fueron realizados con una flota de 10 Vehículos Aéreos no Tripulados (UAV por sus siglas en inglés) -ensamblados y configurados por nuestro grupo de investigación- basados en el modelo DJI Flame-Wheel y equipados con mini-computadoras Intel NUC a bordo y conectividad Wi-Fi. Para los experimentos realizados, los UAVs establecieron una red ad-hoc a través de nodos ROS multi-master en sistema operativo Ubuntu 18. Existe a su vez otra familia de algoritmos autónomos de creciente interés conocida como aprendizaje por recompensas o Reinforcement Learning (RL), en los que el control a aplicar surge a partir de optimizar una señal de recompensa. En esta tesis estudiamos un problema de monitoreo, formulado a partir de restricciones de ocupación de regiones a monitorear por uno o múltiples agentes, que se lleva a un problema de RL en el que las variables duales actúan como señal de recompensa. Para resolver el problema en el caso de un único agente monitoreando varias regiones, diseñamos una parametrización por medio de una red neuronal que procesa en paralelo las variables primales y las duales. Con esta novedad estructural, la red aprende a elegir políticas de navegación en función del grado de satisfacción de las restricciones, que se observa en tiempo real a través de las variables duales. Para el caso de múltiples agentes, simulamos una versión simplificada del problema con un espacio de estados discreto y dos agentes, e imponiendo que los agentes tengan políticas distribuidas logramos un desempeño comparable al de una política centralizada.Swarm or multi-agent robotic systems are a growing area of research. To provide wireless infrastructure on demand, it is necessary to deploy a secondary team of robots that guarantee the connectivity of the swarm. In this paper we explain an optimal positioning algorithm for this team of robots, consisting of a convex optimization stage on a probabilistic channel model and a subsequent connectivity maximization stage of a Laplacian graph. To show the advantage of this mathematical formulation, we carried out both simulations and experiments that were carried out with a fleet of 10 Unmanned Aerial Vehicles (UAV) -assembled and con gured by our research group- based on the model DJI Flame-Wheel and equipped with onboard Intel NUC mini-computers and Wi-Fi connectivity. For the experiments carried out, the UAVs established an ad-hoc network through ROS multi-master nodes in the Ubuntu 18 operating system. There is also another family of autonomous algorithms of growing interest known as Reinforcement Learning (RL), in which the control to be applied arises from optimizing a reward signal. In this thesis we study a monitoring problem, formulated from the occupation restrictions of regions to be monitored by one or multiple agents, which leads to an RL problem in which the dual variables act as a reward signal. To solve the problem in the case of a single agent monitoring several regions, we designed a parameterization through a neural network that processes the primal and dual variables in parallel. With this structural novelty, the network learns to choose navigation policies based on the degree of satisfaction of the constraints, which is observed in real time through the dual variables. For the multi-agent case, we simulate a simpli ed version of the problem with a discrete state space and two agents, and by imposing that the agents have distributed policies, we achieve performance comparable to that of a centralized policy.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-08-26T22:49:20Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ago22.pdf: 9058500 bytes, checksum: a85c254f143e307d9b22c23ce71a8a91 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-29T17:18:12Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ago22.pdf: 9058500 bytes, checksum: a85c254f143e307d9b22c23ce71a8a91 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-08-29T17:20:47Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ago22.pdf: 9058500 bytes, checksum: a85c254f143e307d9b22c23ce71a8a91 (MD5) Previous issue date: 2022Beca de Posgrado de la CAP, UdelaR75 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje AutomáticoRobótica AutónomaRobótica Multi-AgenteRedes NeuronalesOptimización ConvexaAlgoritmos de aprendizaje automático con aplicación a enjambres de robotsTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAgorio, LeopoldoBazerque, Juan AndrésUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería EléctricaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33397/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33397/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33397/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33397/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALAgo22.pdfAgo22.pdfapplication/pdf9058500http://localhost:8080/xmlui/bitstream/20.500.12008/33397/1/Ago22.pdfa85c254f143e307d9b22c23ce71a8a91MD5120.500.12008/333972022-08-29 14:20:47.519oai:colibri.udelar.edu.uy:20.500.12008/33397VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:18.652758COLIBRI - Universidad de la Repúblicafalse
spellingShingle Algoritmos de aprendizaje automático con aplicación a enjambres de robots
Agorio, Leopoldo
Aprendizaje Automático
Robótica Autónoma
Robótica Multi-Agente
Redes Neuronales
Optimización Convexa
status_str acceptedVersion
title Algoritmos de aprendizaje automático con aplicación a enjambres de robots
title_full Algoritmos de aprendizaje automático con aplicación a enjambres de robots
title_fullStr Algoritmos de aprendizaje automático con aplicación a enjambres de robots
title_full_unstemmed Algoritmos de aprendizaje automático con aplicación a enjambres de robots
title_short Algoritmos de aprendizaje automático con aplicación a enjambres de robots
title_sort Algoritmos de aprendizaje automático con aplicación a enjambres de robots
topic Aprendizaje Automático
Robótica Autónoma
Robótica Multi-Agente
Redes Neuronales
Optimización Convexa
url https://hdl.handle.net/20.500.12008/33397