Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies

Shannon, Mario

Supervisor(es): Potrie Altieri, Rafael

Resumen:

El contexto general en el que se enmarca esta tesis es el de dar condiciones necesarias y suficientes para la existencia difeomorfismos parcialmente hiperbólicos en fibrados por círculos sobre superficies M → Σ. Estas 3-variedades se pueden clasificar mediante un invariante que se llama número de Euler, que es un número entero que denotaremos por e(M ). Un fibrado (su clase de difeomorfismos como variedad de dimensión tres) queda completamente determinado por su base Σ y su número de Euler e(M ). Los resultados previos conocidos hasta el momento son los siguientes: 1. Si la base del fibrado es la esfera S 2 entonces M no admite parcialmente hiperbólicos. (En particular, la esfera S 3 no admite sistemas parcialmente hiperbólicos). Esto es un trabajo de Burago e Ivanov del año 2008. 2. Cuando la base es el toro entonces todo fibrado M admite parcialmente hiperbólicos. De hecho, existe una clasificación de estos sistemas (Potrie- Hammerlindl). 3. Cuando la base Σ es una superficie hiperbólica, E. Ghys probó (entre otras cosas) que uno de estos fibrados admite un flujo de Anosov si y sólo si e(M ) es un divisor de la característica de Euler χ(Σ). Por lo tanto, cuando esto ocurre, M admite parcialmente hiperbólicos. El resultado central que probaremos en esta tesis es el siguiente: Teorema. Sea M una 3-variedad cerrada y orientable, que admite una estructura de fibrado por círculos sobre una superficie cerrada y orientable Σ. Entonces M admite un difeomorfismo parcialmente hiperbólico transitivo si y sólo si e(M ) divide a χ(Σ) (si y sólo si M admite un flujo de Anosov). Este trabajo fue hecho en colaboración con Rafael Potrie y Andrew Hammerlindl.


Detalles Bibliográficos
2016
Difeomorfismos parcialmente hiperbólicos
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/21056
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807522820687659008
author Shannon, Mario
author_facet Shannon, Mario
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
e8052f1c565804e24eb24c575476d302
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/21056/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/21056/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/21056/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/21056/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/21056/1/tm-shannon.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Shannon Mario, Universidad de la República (Uruguay). Facultad de Ciencias
dc.creator.advisor.none.fl_str_mv Potrie Altieri, Rafael
dc.creator.none.fl_str_mv Shannon, Mario
dc.date.accessioned.none.fl_str_mv 2019-06-24T19:02:28Z
dc.date.available.none.fl_str_mv 2019-06-24T19:02:28Z
dc.date.issued.none.fl_str_mv 2016
dc.description.abstract.none.fl_txt_mv El contexto general en el que se enmarca esta tesis es el de dar condiciones necesarias y suficientes para la existencia difeomorfismos parcialmente hiperbólicos en fibrados por círculos sobre superficies M → Σ. Estas 3-variedades se pueden clasificar mediante un invariante que se llama número de Euler, que es un número entero que denotaremos por e(M ). Un fibrado (su clase de difeomorfismos como variedad de dimensión tres) queda completamente determinado por su base Σ y su número de Euler e(M ). Los resultados previos conocidos hasta el momento son los siguientes: 1. Si la base del fibrado es la esfera S 2 entonces M no admite parcialmente hiperbólicos. (En particular, la esfera S 3 no admite sistemas parcialmente hiperbólicos). Esto es un trabajo de Burago e Ivanov del año 2008. 2. Cuando la base es el toro entonces todo fibrado M admite parcialmente hiperbólicos. De hecho, existe una clasificación de estos sistemas (Potrie- Hammerlindl). 3. Cuando la base Σ es una superficie hiperbólica, E. Ghys probó (entre otras cosas) que uno de estos fibrados admite un flujo de Anosov si y sólo si e(M ) es un divisor de la característica de Euler χ(Σ). Por lo tanto, cuando esto ocurre, M admite parcialmente hiperbólicos. El resultado central que probaremos en esta tesis es el siguiente: Teorema. Sea M una 3-variedad cerrada y orientable, que admite una estructura de fibrado por círculos sobre una superficie cerrada y orientable Σ. Entonces M admite un difeomorfismo parcialmente hiperbólico transitivo si y sólo si e(M ) divide a χ(Σ) (si y sólo si M admite un flujo de Anosov). Este trabajo fue hecho en colaboración con Rafael Potrie y Andrew Hammerlindl.
dc.format.extent.es.fl_str_mv 48 h.
dc.format.mimetype.en.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Shannon, M. Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2016.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/21056
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv UR.FC.CMAT
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Difeomorfismos parcialmente hiperbólicos
dc.title.none.fl_str_mv Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El contexto general en el que se enmarca esta tesis es el de dar condiciones necesarias y suficientes para la existencia difeomorfismos parcialmente hiperbólicos en fibrados por círculos sobre superficies M → Σ. Estas 3-variedades se pueden clasificar mediante un invariante que se llama número de Euler, que es un número entero que denotaremos por e(M ). Un fibrado (su clase de difeomorfismos como variedad de dimensión tres) queda completamente determinado por su base Σ y su número de Euler e(M ). Los resultados previos conocidos hasta el momento son los siguientes: 1. Si la base del fibrado es la esfera S 2 entonces M no admite parcialmente hiperbólicos. (En particular, la esfera S 3 no admite sistemas parcialmente hiperbólicos). Esto es un trabajo de Burago e Ivanov del año 2008. 2. Cuando la base es el toro entonces todo fibrado M admite parcialmente hiperbólicos. De hecho, existe una clasificación de estos sistemas (Potrie- Hammerlindl). 3. Cuando la base Σ es una superficie hiperbólica, E. Ghys probó (entre otras cosas) que uno de estos fibrados admite un flujo de Anosov si y sólo si e(M ) es un divisor de la característica de Euler χ(Σ). Por lo tanto, cuando esto ocurre, M admite parcialmente hiperbólicos. El resultado central que probaremos en esta tesis es el siguiente: Teorema. Sea M una 3-variedad cerrada y orientable, que admite una estructura de fibrado por círculos sobre una superficie cerrada y orientable Σ. Entonces M admite un difeomorfismo parcialmente hiperbólico transitivo si y sólo si e(M ) divide a χ(Σ) (si y sólo si M admite un flujo de Anosov). Este trabajo fue hecho en colaboración con Rafael Potrie y Andrew Hammerlindl.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_bba4a9776211ff2e21b99e91c20f6393
identifier_str_mv Shannon, M. Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2016.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/21056
publishDate 2016
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling Shannon Mario, Universidad de la República (Uruguay). Facultad de Ciencias2019-06-24T19:02:28Z2019-06-24T19:02:28Z2016Shannon, M. Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2016.https://hdl.handle.net/20.500.12008/21056El contexto general en el que se enmarca esta tesis es el de dar condiciones necesarias y suficientes para la existencia difeomorfismos parcialmente hiperbólicos en fibrados por círculos sobre superficies M → Σ. Estas 3-variedades se pueden clasificar mediante un invariante que se llama número de Euler, que es un número entero que denotaremos por e(M ). Un fibrado (su clase de difeomorfismos como variedad de dimensión tres) queda completamente determinado por su base Σ y su número de Euler e(M ). Los resultados previos conocidos hasta el momento son los siguientes: 1. Si la base del fibrado es la esfera S 2 entonces M no admite parcialmente hiperbólicos. (En particular, la esfera S 3 no admite sistemas parcialmente hiperbólicos). Esto es un trabajo de Burago e Ivanov del año 2008. 2. Cuando la base es el toro entonces todo fibrado M admite parcialmente hiperbólicos. De hecho, existe una clasificación de estos sistemas (Potrie- Hammerlindl). 3. Cuando la base Σ es una superficie hiperbólica, E. Ghys probó (entre otras cosas) que uno de estos fibrados admite un flujo de Anosov si y sólo si e(M ) es un divisor de la característica de Euler χ(Σ). Por lo tanto, cuando esto ocurre, M admite parcialmente hiperbólicos. El resultado central que probaremos en esta tesis es el siguiente: Teorema. Sea M una 3-variedad cerrada y orientable, que admite una estructura de fibrado por círculos sobre una superficie cerrada y orientable Σ. Entonces M admite un difeomorfismo parcialmente hiperbólico transitivo si y sólo si e(M ) divide a χ(Σ) (si y sólo si M admite un flujo de Anosov). Este trabajo fue hecho en colaboración con Rafael Potrie y Andrew Hammerlindl.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-06-24T19:02:28Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tm-shannon.pdf: 658250 bytes, checksum: e8052f1c565804e24eb24c575476d302 (MD5)Made available in DSpace on 2019-06-24T19:02:28Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tm-shannon.pdf: 658250 bytes, checksum: e8052f1c565804e24eb24c575476d302 (MD5) Previous issue date: 201748 h.application/pdfesspaUR.FC.CMATLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Difeomorfismos parcialmente hiperbólicosSistemas parcialmente hiperbólicos en fibrados por círculos sobre superficiesTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaShannon, MarioPotrie Altieri, RafaelUniversidad de la República (Uruguay). Facultad de CienciasMagíster en MatemáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/21056/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/21056/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21056/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21056/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtm-shannon.pdftm-shannon.pdfapplication/pdf658250http://localhost:8080/xmlui/bitstream/20.500.12008/21056/1/tm-shannon.pdfe8052f1c565804e24eb24c575476d302MD5120.500.12008/210562023-07-26 08:14:25.533oai:colibri.udelar.edu.uy:20.500.12008/21056VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:04.058913COLIBRI - Universidad de la Repúblicafalse
spellingShingle Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
Shannon, Mario
Difeomorfismos parcialmente hiperbólicos
status_str acceptedVersion
title Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
title_full Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
title_fullStr Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
title_full_unstemmed Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
title_short Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
title_sort Sistemas parcialmente hiperbólicos en fibrados por círculos sobre superficies
topic Difeomorfismos parcialmente hiperbólicos
url https://hdl.handle.net/20.500.12008/21056