Time series sampling
Resumen:
Some complex models are frequently employed to describe physical and mechanical phenomena. In this setting, we have an input X, which is a time series, and an output Y = f(X) where f is a very complicated function, whose computational cost for every new input is very high. We are given two sets of observations of X, S1 and S2 of different sizes such that only f(S1) isavailable. We tackle the problem of selecting a subsample S3 ∈ S2 of a smaller size on which to run the complex model f and such that distribution of f(S3) is close to that of f(S1). We adapt to this new framework five algorithms introduced in a previous work "Subsampling under Distributional Constraints" to solve this problem and show their efficiency using time series data.
2022 | |
Optimal sampling Kolmogorov–Smirnov Time series Encoding Dynamic time warping |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41080 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Steps towards continual learning in multivariate time-series anomaly detection using variational autoencoders
Autor(es):: García González, Gastón
Fecha de publicación:: (2022) -
On the usage of generative models for network anomaly detection in multivariate time-series.
Autor(es):: García González, Gastón
Fecha de publicación:: (2020) -
One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data
Autor(es):: García González, Gastón
Fecha de publicación:: (2023) -
DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
Autor(es):: García González, Gastón
Fecha de publicación:: (2022) -
Fake it till you detect it : Continual anomaly detection in multivariate time-series using generative AI.
Autor(es):: García González, Gastón
Fecha de publicación:: (2023)