Community detection by resistance distance: automation and benchmark testing

Gancio Vázquez, Juan - Rubido, Nicolás

Resumen:

Heterogeneity characterises real-world networks, where nodes show a broad range of different topological features. However, nodes also tend to organise into communities – subsets of nodes that are sparsely inter-connected but are densely intra-connected (more than the network’s average connectivity). This means that nodes belonging to the same community are close to each other by some distance measure, such as the resistance distance, which is the effective distance between any pair of nodes considering all possible paths. In this work, we present automation (i.e., unsupervised) and missing accuracy tests for a recently proposed semi-supervised community detection algorithm based on the resistance distance. The accuracy testing involves quantifying our algorithm’s performance in terms of recovering known synthetic communities from benchmark networks, where we present results for Girvan-Newman and Lancichinetti-Fortunato-Radicchi networks. Our findings show that our algorithm falls into the class of accurate performers.


Detalles Bibliográficos
2021
Community
Detection
Benchmark Tests
esistance Distance
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/40996
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522801180999680
author Gancio Vázquez, Juan
author2 Rubido, Nicolás
author2_role author
author_facet Gancio Vázquez, Juan
Rubido, Nicolás
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
ef7921392f97e98d8ae1edb1f3cb2e86
71ed42ef0a0b648670f707320be37b90
0906dd13fb6e50e6330011556927abaa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/40996/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/40996/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/40996/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/40996/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/40996/1/101007978303093409526.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Gancio Vázquez Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.
Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.
dc.creator.none.fl_str_mv Gancio Vázquez, Juan
Rubido, Nicolás
dc.date.accessioned.none.fl_str_mv 2023-11-08T12:39:25Z
dc.date.available.none.fl_str_mv 2023-11-08T12:39:25Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Heterogeneity characterises real-world networks, where nodes show a broad range of different topological features. However, nodes also tend to organise into communities – subsets of nodes that are sparsely inter-connected but are densely intra-connected (more than the network’s average connectivity). This means that nodes belonging to the same community are close to each other by some distance measure, such as the resistance distance, which is the effective distance between any pair of nodes considering all possible paths. In this work, we present automation (i.e., unsupervised) and missing accuracy tests for a recently proposed semi-supervised community detection algorithm based on the resistance distance. The accuracy testing involves quantifying our algorithm’s performance in terms of recovering known synthetic communities from benchmark networks, where we present results for Girvan-Newman and Lancichinetti-Fortunato-Radicchi networks. Our findings show that our algorithm falls into the class of accurate performers.
dc.description.es.fl_txt_mv Publicado también en: 10th International Conference on Complex Networks and their Applications proceedings.
dc.format.extent.es.fl_str_mv 12 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Gancio Vázquez, J y Rubido, N. "Community detection by resistance distance: automation and benchmark testing". Physics and Society (physics.soc-ph). [en línea] 2021 arXiv:2111.04438v1, nov. 2021, 12 h.
dc.identifier.doi.none.fl_str_mv 10.48550/arXiv.2111.04438
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/40996
dc.language.iso.none.fl_str_mv en_US
eng
dc.publisher.es.fl_str_mv arXiv
dc.relation.ispartof.es.fl_str_mv Physics and Society (physics.soc-ph), arXiv:2111.04438v1, nov. 2021,
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Community
Detection
Benchmark Tests
esistance Distance
dc.title.none.fl_str_mv Community detection by resistance distance: automation and benchmark testing
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Publicado también en: 10th International Conference on Complex Networks and their Applications proceedings.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_b8061d16c6a03e05621e43e7dfe50c26
identifier_str_mv Gancio Vázquez, J y Rubido, N. "Community detection by resistance distance: automation and benchmark testing". Physics and Society (physics.soc-ph). [en línea] 2021 arXiv:2111.04438v1, nov. 2021, 12 h.
10.48550/arXiv.2111.04438
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en_US
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/40996
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Gancio Vázquez Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2023-11-08T12:39:25Z2023-11-08T12:39:25Z2021Gancio Vázquez, J y Rubido, N. "Community detection by resistance distance: automation and benchmark testing". Physics and Society (physics.soc-ph). [en línea] 2021 arXiv:2111.04438v1, nov. 2021, 12 h.https://hdl.handle.net/20.500.12008/4099610.48550/arXiv.2111.04438Publicado también en: 10th International Conference on Complex Networks and their Applications proceedings.Heterogeneity characterises real-world networks, where nodes show a broad range of different topological features. However, nodes also tend to organise into communities – subsets of nodes that are sparsely inter-connected but are densely intra-connected (more than the network’s average connectivity). This means that nodes belonging to the same community are close to each other by some distance measure, such as the resistance distance, which is the effective distance between any pair of nodes considering all possible paths. In this work, we present automation (i.e., unsupervised) and missing accuracy tests for a recently proposed semi-supervised community detection algorithm based on the resistance distance. The accuracy testing involves quantifying our algorithm’s performance in terms of recovering known synthetic communities from benchmark networks, where we present results for Girvan-Newman and Lancichinetti-Fortunato-Radicchi networks. Our findings show that our algorithm falls into the class of accurate performers.Submitted by Farías Verónica (vfarias@fcien.edu.uy) on 2023-11-07T14:48:31Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 101007978303093409526.pdf: 1495740 bytes, checksum: 0906dd13fb6e50e6330011556927abaa (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-11-08T12:21:12Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 101007978303093409526.pdf: 1495740 bytes, checksum: 0906dd13fb6e50e6330011556927abaa (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-11-08T12:39:25Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 101007978303093409526.pdf: 1495740 bytes, checksum: 0906dd13fb6e50e6330011556927abaa (MD5) Previous issue date: 202112 h.application/pdfen_USengarXivPhysics and Society (physics.soc-ph), arXiv:2111.04438v1, nov. 2021,Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)CommunityDetectionBenchmark Testsesistance DistanceCommunity detection by resistance distance: automation and benchmark testingPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGancio Vázquez, JuanRubido, NicolásLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/40996/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/40996/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-813515http://localhost:8080/xmlui/bitstream/20.500.12008/40996/3/license_textef7921392f97e98d8ae1edb1f3cb2e86MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/40996/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINAL101007978303093409526.pdf101007978303093409526.pdfapplication/pdf1495740http://localhost:8080/xmlui/bitstream/20.500.12008/40996/1/101007978303093409526.pdf0906dd13fb6e50e6330011556927abaaMD5120.500.12008/409962023-11-08 09:39:25.345oai:colibri.udelar.edu.uy:20.500.12008/40996VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:08.864524COLIBRI - Universidad de la Repúblicafalse
spellingShingle Community detection by resistance distance: automation and benchmark testing
Gancio Vázquez, Juan
Community
Detection
Benchmark Tests
esistance Distance
status_str submittedVersion
title Community detection by resistance distance: automation and benchmark testing
title_full Community detection by resistance distance: automation and benchmark testing
title_fullStr Community detection by resistance distance: automation and benchmark testing
title_full_unstemmed Community detection by resistance distance: automation and benchmark testing
title_short Community detection by resistance distance: automation and benchmark testing
title_sort Community detection by resistance distance: automation and benchmark testing
topic Community
Detection
Benchmark Tests
esistance Distance
url https://hdl.handle.net/20.500.12008/40996