Community detection by resistance distance: automation and benchmark testing
Resumen:
Heterogeneity characterises real-world networks, where nodes show a broad range of different topological features. However, nodes also tend to organise into communities – subsets of nodes that are sparsely inter-connected but are densely intra-connected (more than the network’s average connectivity). This means that nodes belonging to the same community are close to each other by some distance measure, such as the resistance distance, which is the effective distance between any pair of nodes considering all possible paths. In this work, we present automation (i.e., unsupervised) and missing accuracy tests for a recently proposed semi-supervised community detection algorithm based on the resistance distance. The accuracy testing involves quantifying our algorithm’s performance in terms of recovering known synthetic communities from benchmark networks, where we present results for Girvan-Newman and Lancichinetti-Fortunato-Radicchi networks. Our findings show that our algorithm falls into the class of accurate performers.
2021 | |
Community Detection Benchmark Tests esistance Distance |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/40996 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522801180999680 |
---|---|
author | Gancio Vázquez, Juan |
author2 | Rubido, Nicolás |
author2_role | author |
author_facet | Gancio Vázquez, Juan Rubido, Nicolás |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c ef7921392f97e98d8ae1edb1f3cb2e86 71ed42ef0a0b648670f707320be37b90 0906dd13fb6e50e6330011556927abaa |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/40996/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/40996/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/40996/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/40996/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/40996/1/101007978303093409526.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Gancio Vázquez Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. |
dc.creator.none.fl_str_mv | Gancio Vázquez, Juan Rubido, Nicolás |
dc.date.accessioned.none.fl_str_mv | 2023-11-08T12:39:25Z |
dc.date.available.none.fl_str_mv | 2023-11-08T12:39:25Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Heterogeneity characterises real-world networks, where nodes show a broad range of different topological features. However, nodes also tend to organise into communities – subsets of nodes that are sparsely inter-connected but are densely intra-connected (more than the network’s average connectivity). This means that nodes belonging to the same community are close to each other by some distance measure, such as the resistance distance, which is the effective distance between any pair of nodes considering all possible paths. In this work, we present automation (i.e., unsupervised) and missing accuracy tests for a recently proposed semi-supervised community detection algorithm based on the resistance distance. The accuracy testing involves quantifying our algorithm’s performance in terms of recovering known synthetic communities from benchmark networks, where we present results for Girvan-Newman and Lancichinetti-Fortunato-Radicchi networks. Our findings show that our algorithm falls into the class of accurate performers. |
dc.description.es.fl_txt_mv | Publicado también en: 10th International Conference on Complex Networks and their Applications proceedings. |
dc.format.extent.es.fl_str_mv | 12 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Gancio Vázquez, J y Rubido, N. "Community detection by resistance distance: automation and benchmark testing". Physics and Society (physics.soc-ph). [en línea] 2021 arXiv:2111.04438v1, nov. 2021, 12 h. |
dc.identifier.doi.none.fl_str_mv | 10.48550/arXiv.2111.04438 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/40996 |
dc.language.iso.none.fl_str_mv | en_US eng |
dc.publisher.es.fl_str_mv | arXiv |
dc.relation.ispartof.es.fl_str_mv | Physics and Society (physics.soc-ph), arXiv:2111.04438v1, nov. 2021, |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Community Detection Benchmark Tests esistance Distance |
dc.title.none.fl_str_mv | Community detection by resistance distance: automation and benchmark testing |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Publicado también en: 10th International Conference on Complex Networks and their Applications proceedings. |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_b8061d16c6a03e05621e43e7dfe50c26 |
identifier_str_mv | Gancio Vázquez, J y Rubido, N. "Community detection by resistance distance: automation and benchmark testing". Physics and Society (physics.soc-ph). [en línea] 2021 arXiv:2111.04438v1, nov. 2021, 12 h. 10.48550/arXiv.2111.04438 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en_US |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/40996 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Gancio Vázquez Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2023-11-08T12:39:25Z2023-11-08T12:39:25Z2021Gancio Vázquez, J y Rubido, N. "Community detection by resistance distance: automation and benchmark testing". Physics and Society (physics.soc-ph). [en línea] 2021 arXiv:2111.04438v1, nov. 2021, 12 h.https://hdl.handle.net/20.500.12008/4099610.48550/arXiv.2111.04438Publicado también en: 10th International Conference on Complex Networks and their Applications proceedings.Heterogeneity characterises real-world networks, where nodes show a broad range of different topological features. However, nodes also tend to organise into communities – subsets of nodes that are sparsely inter-connected but are densely intra-connected (more than the network’s average connectivity). This means that nodes belonging to the same community are close to each other by some distance measure, such as the resistance distance, which is the effective distance between any pair of nodes considering all possible paths. In this work, we present automation (i.e., unsupervised) and missing accuracy tests for a recently proposed semi-supervised community detection algorithm based on the resistance distance. The accuracy testing involves quantifying our algorithm’s performance in terms of recovering known synthetic communities from benchmark networks, where we present results for Girvan-Newman and Lancichinetti-Fortunato-Radicchi networks. Our findings show that our algorithm falls into the class of accurate performers.Submitted by Farías Verónica (vfarias@fcien.edu.uy) on 2023-11-07T14:48:31Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 101007978303093409526.pdf: 1495740 bytes, checksum: 0906dd13fb6e50e6330011556927abaa (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-11-08T12:21:12Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 101007978303093409526.pdf: 1495740 bytes, checksum: 0906dd13fb6e50e6330011556927abaa (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-11-08T12:39:25Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 101007978303093409526.pdf: 1495740 bytes, checksum: 0906dd13fb6e50e6330011556927abaa (MD5) Previous issue date: 202112 h.application/pdfen_USengarXivPhysics and Society (physics.soc-ph), arXiv:2111.04438v1, nov. 2021,Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)CommunityDetectionBenchmark Testsesistance DistanceCommunity detection by resistance distance: automation and benchmark testingPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGancio Vázquez, JuanRubido, NicolásLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/40996/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/40996/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-813515http://localhost:8080/xmlui/bitstream/20.500.12008/40996/3/license_textef7921392f97e98d8ae1edb1f3cb2e86MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/40996/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINAL101007978303093409526.pdf101007978303093409526.pdfapplication/pdf1495740http://localhost:8080/xmlui/bitstream/20.500.12008/40996/1/101007978303093409526.pdf0906dd13fb6e50e6330011556927abaaMD5120.500.12008/409962023-11-08 09:39:25.345oai:colibri.udelar.edu.uy:20.500.12008/40996VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:08.864524COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Community detection by resistance distance: automation and benchmark testing Gancio Vázquez, Juan Community Detection Benchmark Tests esistance Distance |
status_str | submittedVersion |
title | Community detection by resistance distance: automation and benchmark testing |
title_full | Community detection by resistance distance: automation and benchmark testing |
title_fullStr | Community detection by resistance distance: automation and benchmark testing |
title_full_unstemmed | Community detection by resistance distance: automation and benchmark testing |
title_short | Community detection by resistance distance: automation and benchmark testing |
title_sort | Community detection by resistance distance: automation and benchmark testing |
topic | Community Detection Benchmark Tests esistance Distance |
url | https://hdl.handle.net/20.500.12008/40996 |