DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders

García González, Gastón - Martínez Tagliafico, Sergio - Fernández, Alicia - Gómez, Gabriel - Acuña, José - Casas, Pedro

Resumen:

Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate DC-VAE on the detection of anomalies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling.


Detalles Bibliográficos
2022
Este trabajo ha sido parcialmente financiado por la ANII-FMV, proyecto con referencia FMV-1-2019-1-155850 Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo, por Telefónica, y por la Austrian FFG ICTof- the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.
Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
Inglés
Universidad de la República
COLIBRI
https://wtmc.info/index.html
https://hdl.handle.net/20.500.12008/31392
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899313033216
author García González, Gastón
author2 Martínez Tagliafico, Sergio
Fernández, Alicia
Gómez, Gabriel
Acuña, José
Casas, Pedro
author2_role author
author
author
author
author
author_facet García González, Gastón
Martínez Tagliafico, Sergio
Fernández, Alicia
Gómez, Gabriel
Acuña, José
Casas, Pedro
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
85c43a2511bbf50a93b8663ba1c25baa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/31392/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/31392/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/31392/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/31392/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/31392/1/GMFGAC22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.
Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.
Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.
Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería.
Casas Pedro, Austrian Institute of Technology, Vienna, Austria
dc.creator.none.fl_str_mv García González, Gastón
Martínez Tagliafico, Sergio
Fernández, Alicia
Gómez, Gabriel
Acuña, José
Casas, Pedro
dc.date.accessioned.none.fl_str_mv 2022-05-02T16:45:15Z
dc.date.available.none.fl_str_mv 2022-05-02T16:45:15Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate DC-VAE on the detection of anomalies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling.
dc.description.es.fl_txt_mv Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica.
dc.description.sponsorship.none.fl_txt_mv Este trabajo ha sido parcialmente financiado por la ANII-FMV, proyecto con referencia FMV-1-2019-1-155850 Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo, por Telefónica, y por la Austrian FFG ICTof- the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.
dc.format.extent.es.fl_str_mv 7 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv García González, G., Martínez Tagliafico, S., Fernández, A. y otros. DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders [en línea]. EN: 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022 , pp 1-7. Piscataway, NJ : IEEE, 2022.
dc.identifier.uri.none.fl_str_mv https://wtmc.info/index.html
https://hdl.handle.net/20.500.12008/31392
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv IEEE
dc.relation.ispartof.es.fl_str_mv 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022, pp 1-7
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
dc.title.none.fl_str_mv DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_b6d05a9846e55d7ed2f293026e1e2885
identifier_str_mv García González, G., Martínez Tagliafico, S., Fernández, A. y otros. DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders [en línea]. EN: 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022 , pp 1-7. Piscataway, NJ : IEEE, 2022.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/31392
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería.Casas Pedro, Austrian Institute of Technology, Vienna, Austria2022-05-02T16:45:15Z2022-05-02T16:45:15Z2022García González, G., Martínez Tagliafico, S., Fernández, A. y otros. DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders [en línea]. EN: 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022 , pp 1-7. Piscataway, NJ : IEEE, 2022.https://wtmc.info/index.htmlhttps://hdl.handle.net/20.500.12008/31392Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica.Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate DC-VAE on the detection of anomalies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-04-29T23:13:22Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22.pdf: 1530383 bytes, checksum: 85c43a2511bbf50a93b8663ba1c25baa (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-05-02T15:49:28Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22.pdf: 1530383 bytes, checksum: 85c43a2511bbf50a93b8663ba1c25baa (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-05-02T16:45:15Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22.pdf: 1530383 bytes, checksum: 85c43a2511bbf50a93b8663ba1c25baa (MD5) Previous issue date: 2022Este trabajo ha sido parcialmente financiado por la ANII-FMV, proyecto con referencia FMV-1-2019-1-155850 Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo, por Telefónica, y por la Austrian FFG ICTof- the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.7 p.application/pdfenengIEEE7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022, pp 1-7Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Anomaly DetectionDeep LearningMultivariate Time-SeriesDilated ConvolutionVAEDC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encodersPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGarcía González, GastónMartínez Tagliafico, SergioFernández, AliciaGómez, GabrielAcuña, JoséCasas, PedroLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/31392/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/31392/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/31392/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/31392/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGMFGAC22.pdfGMFGAC22.pdfapplication/pdf1530383http://localhost:8080/xmlui/bitstream/20.500.12008/31392/1/GMFGAC22.pdf85c43a2511bbf50a93b8663ba1c25baaMD5120.500.12008/313922024-05-30 16:16:17.699oai:colibri.udelar.edu.uy:20.500.12008/31392VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:17.373559COLIBRI - Universidad de la Repúblicafalse
spellingShingle DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
García González, Gastón
Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
status_str publishedVersion
title DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
title_full DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
title_fullStr DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
title_full_unstemmed DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
title_short DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
title_sort DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
topic Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
url https://wtmc.info/index.html
https://hdl.handle.net/20.500.12008/31392