DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
Resumen:
Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate DC-VAE on the detection of anomalies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling.
2022 | |
Este trabajo ha sido parcialmente financiado por la ANII-FMV, proyecto con referencia FMV-1-2019-1-155850 Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo, por Telefónica, y por la Austrian FFG ICTof- the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022. | |
Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://wtmc.info/index.html
https://hdl.handle.net/20.500.12008/31392 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522899313033216 |
---|---|
author | García González, Gastón |
author2 | Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Casas, Pedro |
author2_role | author author author author author |
author_facet | García González, Gastón Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Casas, Pedro |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 85c43a2511bbf50a93b8663ba1c25baa |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/31392/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/31392/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/31392/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/31392/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/31392/1/GMFGAC22.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería. Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería. Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería. Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería. Casas Pedro, Austrian Institute of Technology, Vienna, Austria |
dc.creator.none.fl_str_mv | García González, Gastón Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Casas, Pedro |
dc.date.accessioned.none.fl_str_mv | 2022-05-02T16:45:15Z |
dc.date.available.none.fl_str_mv | 2022-05-02T16:45:15Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate DC-VAE on the detection of anomalies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling. |
dc.description.es.fl_txt_mv | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica. |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo ha sido parcialmente financiado por la ANII-FMV, proyecto con referencia FMV-1-2019-1-155850 Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo, por Telefónica, y por la Austrian FFG ICTof- the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022. |
dc.format.extent.es.fl_str_mv | 7 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | García González, G., Martínez Tagliafico, S., Fernández, A. y otros. DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders [en línea]. EN: 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022 , pp 1-7. Piscataway, NJ : IEEE, 2022. |
dc.identifier.uri.none.fl_str_mv | https://wtmc.info/index.html https://hdl.handle.net/20.500.12008/31392 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022, pp 1-7 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE |
dc.title.none.fl_str_mv | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_b6d05a9846e55d7ed2f293026e1e2885 |
identifier_str_mv | García González, G., Martínez Tagliafico, S., Fernández, A. y otros. DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders [en línea]. EN: 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022 , pp 1-7. Piscataway, NJ : IEEE, 2022. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/31392 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería.Casas Pedro, Austrian Institute of Technology, Vienna, Austria2022-05-02T16:45:15Z2022-05-02T16:45:15Z2022García González, G., Martínez Tagliafico, S., Fernández, A. y otros. DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders [en línea]. EN: 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022 , pp 1-7. Piscataway, NJ : IEEE, 2022.https://wtmc.info/index.htmlhttps://hdl.handle.net/20.500.12008/31392Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica.Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate DC-VAE on the detection of anomalies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-04-29T23:13:22Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22.pdf: 1530383 bytes, checksum: 85c43a2511bbf50a93b8663ba1c25baa (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-05-02T15:49:28Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22.pdf: 1530383 bytes, checksum: 85c43a2511bbf50a93b8663ba1c25baa (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-05-02T16:45:15Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22.pdf: 1530383 bytes, checksum: 85c43a2511bbf50a93b8663ba1c25baa (MD5) Previous issue date: 2022Este trabajo ha sido parcialmente financiado por la ANII-FMV, proyecto con referencia FMV-1-2019-1-155850 Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo, por Telefónica, y por la Austrian FFG ICTof- the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.7 p.application/pdfenengIEEE7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022, pp 1-7Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Anomaly DetectionDeep LearningMultivariate Time-SeriesDilated ConvolutionVAEDC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encodersPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGarcía González, GastónMartínez Tagliafico, SergioFernández, AliciaGómez, GabrielAcuña, JoséCasas, PedroLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/31392/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/31392/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/31392/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/31392/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGMFGAC22.pdfGMFGAC22.pdfapplication/pdf1530383http://localhost:8080/xmlui/bitstream/20.500.12008/31392/1/GMFGAC22.pdf85c43a2511bbf50a93b8663ba1c25baaMD5120.500.12008/313922024-05-30 16:16:17.699oai:colibri.udelar.edu.uy:20.500.12008/31392VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:17.373559COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders García González, Gastón Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE |
status_str | publishedVersion |
title | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
title_full | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
title_fullStr | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
title_full_unstemmed | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
title_short | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
title_sort | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
topic | Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE |
url | https://wtmc.info/index.html https://hdl.handle.net/20.500.12008/31392 |