Instance-based learning following physician reasoning for assistance during medical consultation

Galnares, Matías

Supervisor(es): Simini, Franco - Nesmachnow, Sergio

Resumen:

Esta tesis de maestría presenta un sistema automático que modela el conocimiento clínico para seguir el razonamiento médico durante una consulta ambulatoria. Se aplica un método de aprendizaje basado en instancias para proporcionar sugerencias durante el registro en una historia clínica electrónica. El método de aprendizaje propuesto tiene en cuenta la base de conocimiento clínico de cada médico, para presentar sugerencias basadas en tipos de casos clínicos previamente definidos, y deducidos según una métrica de similitud específicamente diseñada. El sistema se valida en un escenario de uso real, con la participación de estudiantes avanzados de medicina de un curso de informática médica de la Universidad de la República, Uruguay. Los resultados demuestran que el sistema propuesto es 2.5x más eficiente que una herramienta empírica de referencia para sugerencias, y dos órdenes de magnitud más rápido que un método de aprendizaje Bayesiano, considerando un marco de referencia de 250 tipos de casos clínicos. Los resultados también demuestran que el método de aprendizaje es capaz de producir sugerencias en tiempos razonables, incluso cuando se procesan grandes volúmenes de datos. Una encuesta realizada a estudiantes avanzados de medicina destaca que el enfoque propuesto se considera apropiado para la práctica médica. Esta investigación introduce una estructura formal para representar con precisión el conocimiento clínico, que apoya a los principales flujos que ocurren durante las consultas médicas. También se proporciona un marco que permite implementar un sistema en tiempo real capaz de asistir a los médicos durante sus consultas, y que además ayuda a reducir el tiempo de registro.


This Master Thesis presents an automatic system for modeling clinical knowledge to follow physicians reasoning in medical consultation. Instance-based learning is applied to provide suggestions when recording electronicmedical records. The proposed learning method takes into account the clinical knowledge base of a physician, in order to present suggestions based on previously-defined clinical case types, and deduced according to an ad-hoc similarity metric. The system is validated on a real case study involving advanced medical students of a Medical Informatics course at Universidad de la República, Uruguay. Results show that the proposed system is 2.5× more efficient than a base-line empirical tool for suggestions, and two orders of magnitude faster than a Bayesian learning method, when processing a testbed of 250 clinical casetypes. Results also demostrate that the learning method is able to produce suggestions in a reasonable time frame, even when processing large volumes of data. A survey performed on advanced medical students highlights that the proposed approach is considered appropriate for medical practices. The research introduces a formal structure to accurately represent clinical knowledge, supporting the main flows of medical consultations. A frame for implementing a real-time system for assisting physicians during medical consultations is also provided, which helps reducing the time needed to register medical consultations.


Detalles Bibliográficos
2021
Inteligencia computacional
Asistencia médica
Aprendizaje basado en instancias
Atención sanitaria
Sistemas de apoyo a la decisión clínica
Computational intelligence
Medical assistance
Instance-based learning
Healthcare
Clinical decision support systems
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/33014
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182497759232
author Galnares, Matías
author_facet Galnares, Matías
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
2512f984653a8138baef5feb5adb9ae3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/33014/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/33014/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/33014/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/33014/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/33014/1/GAL21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Galnares Matías, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Simini, Franco
Nesmachnow, Sergio
dc.creator.none.fl_str_mv Galnares, Matías
dc.date.accessioned.none.fl_str_mv 2022-08-09T18:47:49Z
dc.date.available.none.fl_str_mv 2022-08-09T18:47:49Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Esta tesis de maestría presenta un sistema automático que modela el conocimiento clínico para seguir el razonamiento médico durante una consulta ambulatoria. Se aplica un método de aprendizaje basado en instancias para proporcionar sugerencias durante el registro en una historia clínica electrónica. El método de aprendizaje propuesto tiene en cuenta la base de conocimiento clínico de cada médico, para presentar sugerencias basadas en tipos de casos clínicos previamente definidos, y deducidos según una métrica de similitud específicamente diseñada. El sistema se valida en un escenario de uso real, con la participación de estudiantes avanzados de medicina de un curso de informática médica de la Universidad de la República, Uruguay. Los resultados demuestran que el sistema propuesto es 2.5x más eficiente que una herramienta empírica de referencia para sugerencias, y dos órdenes de magnitud más rápido que un método de aprendizaje Bayesiano, considerando un marco de referencia de 250 tipos de casos clínicos. Los resultados también demuestran que el método de aprendizaje es capaz de producir sugerencias en tiempos razonables, incluso cuando se procesan grandes volúmenes de datos. Una encuesta realizada a estudiantes avanzados de medicina destaca que el enfoque propuesto se considera apropiado para la práctica médica. Esta investigación introduce una estructura formal para representar con precisión el conocimiento clínico, que apoya a los principales flujos que ocurren durante las consultas médicas. También se proporciona un marco que permite implementar un sistema en tiempo real capaz de asistir a los médicos durante sus consultas, y que además ayuda a reducir el tiempo de registro.
This Master Thesis presents an automatic system for modeling clinical knowledge to follow physicians reasoning in medical consultation. Instance-based learning is applied to provide suggestions when recording electronicmedical records. The proposed learning method takes into account the clinical knowledge base of a physician, in order to present suggestions based on previously-defined clinical case types, and deduced according to an ad-hoc similarity metric. The system is validated on a real case study involving advanced medical students of a Medical Informatics course at Universidad de la República, Uruguay. Results show that the proposed system is 2.5× more efficient than a base-line empirical tool for suggestions, and two orders of magnitude faster than a Bayesian learning method, when processing a testbed of 250 clinical casetypes. Results also demostrate that the learning method is able to produce suggestions in a reasonable time frame, even when processing large volumes of data. A survey performed on advanced medical students highlights that the proposed approach is considered appropriate for medical practices. The research introduces a formal structure to accurately represent clinical knowledge, supporting the main flows of medical consultations. A frame for implementing a real-time system for assisting physicians during medical consultations is also provided, which helps reducing the time needed to register medical consultations.
dc.format.extent.es.fl_str_mv 87 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Galnares, M. Instance-based learning following physician reasoning for assistance during medical consultation [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2021.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.other.none.fl_str_mv Reporte técnico 495
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/33014
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Inteligencia computacional
Asistencia médica
Aprendizaje basado en instancias
Atención sanitaria
Sistemas de apoyo a la decisión clínica
Computational intelligence
Medical assistance
Instance-based learning
Healthcare
Clinical decision support systems
dc.title.none.fl_str_mv Instance-based learning following physician reasoning for assistance during medical consultation
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Esta tesis de maestría presenta un sistema automático que modela el conocimiento clínico para seguir el razonamiento médico durante una consulta ambulatoria. Se aplica un método de aprendizaje basado en instancias para proporcionar sugerencias durante el registro en una historia clínica electrónica. El método de aprendizaje propuesto tiene en cuenta la base de conocimiento clínico de cada médico, para presentar sugerencias basadas en tipos de casos clínicos previamente definidos, y deducidos según una métrica de similitud específicamente diseñada. El sistema se valida en un escenario de uso real, con la participación de estudiantes avanzados de medicina de un curso de informática médica de la Universidad de la República, Uruguay. Los resultados demuestran que el sistema propuesto es 2.5x más eficiente que una herramienta empírica de referencia para sugerencias, y dos órdenes de magnitud más rápido que un método de aprendizaje Bayesiano, considerando un marco de referencia de 250 tipos de casos clínicos. Los resultados también demuestran que el método de aprendizaje es capaz de producir sugerencias en tiempos razonables, incluso cuando se procesan grandes volúmenes de datos. Una encuesta realizada a estudiantes avanzados de medicina destaca que el enfoque propuesto se considera apropiado para la práctica médica. Esta investigación introduce una estructura formal para representar con precisión el conocimiento clínico, que apoya a los principales flujos que ocurren durante las consultas médicas. También se proporciona un marco que permite implementar un sistema en tiempo real capaz de asistir a los médicos durante sus consultas, y que además ayuda a reducir el tiempo de registro.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_b46c862955920af2a5ddf2be4edd3846
identifier_str_mv Galnares, M. Instance-based learning following physician reasoning for assistance during medical consultation [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2021.
1688-2792
Reporte técnico 495
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/33014
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Galnares Matías, Universidad de la República (Uruguay). Facultad de Ingeniería2022-08-09T18:47:49Z2022-08-09T18:47:49Z2021Galnares, M. Instance-based learning following physician reasoning for assistance during medical consultation [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2021.1688-2792Reporte técnico 495https://hdl.handle.net/20.500.12008/33014Esta tesis de maestría presenta un sistema automático que modela el conocimiento clínico para seguir el razonamiento médico durante una consulta ambulatoria. Se aplica un método de aprendizaje basado en instancias para proporcionar sugerencias durante el registro en una historia clínica electrónica. El método de aprendizaje propuesto tiene en cuenta la base de conocimiento clínico de cada médico, para presentar sugerencias basadas en tipos de casos clínicos previamente definidos, y deducidos según una métrica de similitud específicamente diseñada. El sistema se valida en un escenario de uso real, con la participación de estudiantes avanzados de medicina de un curso de informática médica de la Universidad de la República, Uruguay. Los resultados demuestran que el sistema propuesto es 2.5x más eficiente que una herramienta empírica de referencia para sugerencias, y dos órdenes de magnitud más rápido que un método de aprendizaje Bayesiano, considerando un marco de referencia de 250 tipos de casos clínicos. Los resultados también demuestran que el método de aprendizaje es capaz de producir sugerencias en tiempos razonables, incluso cuando se procesan grandes volúmenes de datos. Una encuesta realizada a estudiantes avanzados de medicina destaca que el enfoque propuesto se considera apropiado para la práctica médica. Esta investigación introduce una estructura formal para representar con precisión el conocimiento clínico, que apoya a los principales flujos que ocurren durante las consultas médicas. También se proporciona un marco que permite implementar un sistema en tiempo real capaz de asistir a los médicos durante sus consultas, y que además ayuda a reducir el tiempo de registro.This Master Thesis presents an automatic system for modeling clinical knowledge to follow physicians reasoning in medical consultation. Instance-based learning is applied to provide suggestions when recording electronicmedical records. The proposed learning method takes into account the clinical knowledge base of a physician, in order to present suggestions based on previously-defined clinical case types, and deduced according to an ad-hoc similarity metric. The system is validated on a real case study involving advanced medical students of a Medical Informatics course at Universidad de la República, Uruguay. Results show that the proposed system is 2.5× more efficient than a base-line empirical tool for suggestions, and two orders of magnitude faster than a Bayesian learning method, when processing a testbed of 250 clinical casetypes. Results also demostrate that the learning method is able to produce suggestions in a reasonable time frame, even when processing large volumes of data. A survey performed on advanced medical students highlights that the proposed approach is considered appropriate for medical practices. The research introduces a formal structure to accurately represent clinical knowledge, supporting the main flows of medical consultations. A frame for implementing a real-time system for assisting physicians during medical consultations is also provided, which helps reducing the time needed to register medical consultations.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-07-29T14:14:40Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GAL21.pdf: 1322298 bytes, checksum: 2512f984653a8138baef5feb5adb9ae3 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-09T18:25:38Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GAL21.pdf: 1322298 bytes, checksum: 2512f984653a8138baef5feb5adb9ae3 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-08-09T18:47:49Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GAL21.pdf: 1322298 bytes, checksum: 2512f984653a8138baef5feb5adb9ae3 (MD5) Previous issue date: 202187 p.application/pdfenengUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Inteligencia computacionalAsistencia médicaAprendizaje basado en instanciasAtención sanitariaSistemas de apoyo a la decisión clínicaComputational intelligenceMedical assistanceInstance-based learningHealthcareClinical decision support systemsInstance-based learning following physician reasoning for assistance during medical consultationTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGalnares, MatíasSimini, FrancoNesmachnow, SergioUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33014/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33014/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33014/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33014/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGAL21.pdfGAL21.pdfapplication/pdf1322298http://localhost:8080/xmlui/bitstream/20.500.12008/33014/1/GAL21.pdf2512f984653a8138baef5feb5adb9ae3MD5120.500.12008/330142022-08-09 15:47:49.362oai:colibri.udelar.edu.uy:20.500.12008/33014VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:28.040715COLIBRI - Universidad de la Repúblicafalse
spellingShingle Instance-based learning following physician reasoning for assistance during medical consultation
Galnares, Matías
Inteligencia computacional
Asistencia médica
Aprendizaje basado en instancias
Atención sanitaria
Sistemas de apoyo a la decisión clínica
Computational intelligence
Medical assistance
Instance-based learning
Healthcare
Clinical decision support systems
status_str acceptedVersion
title Instance-based learning following physician reasoning for assistance during medical consultation
title_full Instance-based learning following physician reasoning for assistance during medical consultation
title_fullStr Instance-based learning following physician reasoning for assistance during medical consultation
title_full_unstemmed Instance-based learning following physician reasoning for assistance during medical consultation
title_short Instance-based learning following physician reasoning for assistance during medical consultation
title_sort Instance-based learning following physician reasoning for assistance during medical consultation
topic Inteligencia computacional
Asistencia médica
Aprendizaje basado en instancias
Atención sanitaria
Sistemas de apoyo a la decisión clínica
Computational intelligence
Medical assistance
Instance-based learning
Healthcare
Clinical decision support systems
url https://hdl.handle.net/20.500.12008/33014