Stabilization through self‑coupling in networks of small‑world and scale‑free topology
Resumen:
Mechanisms that ensure the stability of dynamical systems are of vital importance, in particular in our globalized and increasingly interconnected world. The so-called connectivity-stability dilemma denotes the theoretical finding that increased connectivity between the components of a large dynamical system drastically reduces its stability. This result has promoted controversies within ecology and other fields of biology, especially, because organisms as well as ecosystems constitute systems that are both highly connected and stable. Hence, it has been a major challenge to find ways to stabilize complex systems while preserving high connectivity at the same time. Investigating the stability of networks that exhibit small-world or scale-free topology is of particular interest, since these topologies have been found in many different types of real-world networks. Here, we use an approach to stabilize recurrent networks of small-world and scale-free topology by increasing the average self-coupling strength of the units of a network. For both topologies, we find that there is a sharp transition from instability to asymptotic stability. Then, most importantly, we find that the average self-coupling strength needed to stabilize a system increases much slower than its size. It appears that the qualitative shape of this relationship is the same for small-world and scale-free networks, while scale-free networks can require higher magnitudes of self-coupling. We further explore the stabilization of networks with Kronecker-Leskovec topology. Finally, we argue that our findings, in particular the stabilization of large recurrent networks through small increases in the unit self-regulation, are of practical importance for the stabilization of diverse types of complex systems.
2023 | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42746 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522806913564672 |
---|---|
author | Luboeinski, Jannik |
author2 | Claro, Luis Pomi, Andrés Mizraji Nathan, Eduardo Jacobo |
author2_role | author author author |
author_facet | Luboeinski, Jannik Claro, Luis Pomi, Andrés Mizraji Nathan, Eduardo Jacobo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c 8010f418ede1186e294ac5448996bd7e 71ed42ef0a0b648670f707320be37b90 47b71b3632ed1b7878299e53bb8c98aa |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/42746/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/42746/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/42746/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/42746/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/42746/1/10.1038.s41598-023-27809-8.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Luboeinski Jannik Claro Luis, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología. Pomi Andrés, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología. Mizraji Nathan Eduardo Jacobo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología. |
dc.creator.none.fl_str_mv | Luboeinski, Jannik Claro, Luis Pomi, Andrés Mizraji Nathan, Eduardo Jacobo |
dc.date.accessioned.none.fl_str_mv | 2024-02-27T14:33:24Z |
dc.date.available.none.fl_str_mv | 2024-02-27T14:33:24Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Mechanisms that ensure the stability of dynamical systems are of vital importance, in particular in our globalized and increasingly interconnected world. The so-called connectivity-stability dilemma denotes the theoretical finding that increased connectivity between the components of a large dynamical system drastically reduces its stability. This result has promoted controversies within ecology and other fields of biology, especially, because organisms as well as ecosystems constitute systems that are both highly connected and stable. Hence, it has been a major challenge to find ways to stabilize complex systems while preserving high connectivity at the same time. Investigating the stability of networks that exhibit small-world or scale-free topology is of particular interest, since these topologies have been found in many different types of real-world networks. Here, we use an approach to stabilize recurrent networks of small-world and scale-free topology by increasing the average self-coupling strength of the units of a network. For both topologies, we find that there is a sharp transition from instability to asymptotic stability. Then, most importantly, we find that the average self-coupling strength needed to stabilize a system increases much slower than its size. It appears that the qualitative shape of this relationship is the same for small-world and scale-free networks, while scale-free networks can require higher magnitudes of self-coupling. We further explore the stabilization of networks with Kronecker-Leskovec topology. Finally, we argue that our findings, in particular the stabilization of large recurrent networks through small increases in the unit self-regulation, are of practical importance for the stabilization of diverse types of complex systems. |
dc.format.extent.es.fl_str_mv | 13 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Luboeinski, J, Claro, L, Pomi, A [y otros autores]. "Stabilization through self‑coupling in networks of small‑world and scale‑free topology". Scientific reports. [en línea] 2023, 13: 1089. 13 h. DOI: 10.1038/s41598-023-27809-8. |
dc.identifier.doi.none.fl_str_mv | 10.1038/s41598-023-27809-8 |
dc.identifier.issn.none.fl_str_mv | 2045-2322 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/42746 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Springer Nature |
dc.relation.ispartof.es.fl_str_mv | Scientific reports, 2023, 13: 1089. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.title.none.fl_str_mv | Stabilization through self‑coupling in networks of small‑world and scale‑free topology |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Mechanisms that ensure the stability of dynamical systems are of vital importance, in particular in our globalized and increasingly interconnected world. The so-called connectivity-stability dilemma denotes the theoretical finding that increased connectivity between the components of a large dynamical system drastically reduces its stability. This result has promoted controversies within ecology and other fields of biology, especially, because organisms as well as ecosystems constitute systems that are both highly connected and stable. Hence, it has been a major challenge to find ways to stabilize complex systems while preserving high connectivity at the same time. Investigating the stability of networks that exhibit small-world or scale-free topology is of particular interest, since these topologies have been found in many different types of real-world networks. Here, we use an approach to stabilize recurrent networks of small-world and scale-free topology by increasing the average self-coupling strength of the units of a network. For both topologies, we find that there is a sharp transition from instability to asymptotic stability. Then, most importantly, we find that the average self-coupling strength needed to stabilize a system increases much slower than its size. It appears that the qualitative shape of this relationship is the same for small-world and scale-free networks, while scale-free networks can require higher magnitudes of self-coupling. We further explore the stabilization of networks with Kronecker-Leskovec topology. Finally, we argue that our findings, in particular the stabilization of large recurrent networks through small increases in the unit self-regulation, are of practical importance for the stabilization of diverse types of complex systems. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_b28fc4a17c87fa05b721e1d18cc811e9 |
identifier_str_mv | Luboeinski, J, Claro, L, Pomi, A [y otros autores]. "Stabilization through self‑coupling in networks of small‑world and scale‑free topology". Scientific reports. [en línea] 2023, 13: 1089. 13 h. DOI: 10.1038/s41598-023-27809-8. 2045-2322 10.1038/s41598-023-27809-8 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/42746 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Luboeinski JannikClaro Luis, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.Pomi Andrés, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.Mizraji Nathan Eduardo Jacobo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.2024-02-27T14:33:24Z2024-02-27T14:33:24Z2023Luboeinski, J, Claro, L, Pomi, A [y otros autores]. "Stabilization through self‑coupling in networks of small‑world and scale‑free topology". Scientific reports. [en línea] 2023, 13: 1089. 13 h. DOI: 10.1038/s41598-023-27809-8.2045-2322https://hdl.handle.net/20.500.12008/4274610.1038/s41598-023-27809-8Mechanisms that ensure the stability of dynamical systems are of vital importance, in particular in our globalized and increasingly interconnected world. The so-called connectivity-stability dilemma denotes the theoretical finding that increased connectivity between the components of a large dynamical system drastically reduces its stability. This result has promoted controversies within ecology and other fields of biology, especially, because organisms as well as ecosystems constitute systems that are both highly connected and stable. Hence, it has been a major challenge to find ways to stabilize complex systems while preserving high connectivity at the same time. Investigating the stability of networks that exhibit small-world or scale-free topology is of particular interest, since these topologies have been found in many different types of real-world networks. Here, we use an approach to stabilize recurrent networks of small-world and scale-free topology by increasing the average self-coupling strength of the units of a network. For both topologies, we find that there is a sharp transition from instability to asymptotic stability. Then, most importantly, we find that the average self-coupling strength needed to stabilize a system increases much slower than its size. It appears that the qualitative shape of this relationship is the same for small-world and scale-free networks, while scale-free networks can require higher magnitudes of self-coupling. We further explore the stabilization of networks with Kronecker-Leskovec topology. Finally, we argue that our findings, in particular the stabilization of large recurrent networks through small increases in the unit self-regulation, are of practical importance for the stabilization of diverse types of complex systems.Submitted by Pintos Natalia (nataliapintosmvd@gmail.com) on 2024-02-26T16:32:17Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1038.s41598-023-27809-8.pdf: 33800659 bytes, checksum: 47b71b3632ed1b7878299e53bb8c98aa (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-02-27T12:50:32Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1038.s41598-023-27809-8.pdf: 33800659 bytes, checksum: 47b71b3632ed1b7878299e53bb8c98aa (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-02-27T14:33:24Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1038.s41598-023-27809-8.pdf: 33800659 bytes, checksum: 47b71b3632ed1b7878299e53bb8c98aa (MD5) Previous issue date: 202313 h.application/pdfenengSpringer NatureScientific reports, 2023, 13: 1089.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Stabilization through self‑coupling in networks of small‑world and scale‑free topologyArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLuboeinski, JannikClaro, LuisPomi, AndrésMizraji Nathan, Eduardo JacoboLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42746/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/42746/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820277http://localhost:8080/xmlui/bitstream/20.500.12008/42746/3/license_text8010f418ede1186e294ac5448996bd7eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/42746/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINAL10.1038.s41598-023-27809-8.pdf10.1038.s41598-023-27809-8.pdfapplication/pdf33800659http://localhost:8080/xmlui/bitstream/20.500.12008/42746/1/10.1038.s41598-023-27809-8.pdf47b71b3632ed1b7878299e53bb8c98aaMD5120.500.12008/427462024-02-27 11:33:24.772oai:colibri.udelar.edu.uy:20.500.12008/42746VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:21.810636COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Stabilization through self‑coupling in networks of small‑world and scale‑free topology Luboeinski, Jannik |
status_str | publishedVersion |
title | Stabilization through self‑coupling in networks of small‑world and scale‑free topology |
title_full | Stabilization through self‑coupling in networks of small‑world and scale‑free topology |
title_fullStr | Stabilization through self‑coupling in networks of small‑world and scale‑free topology |
title_full_unstemmed | Stabilization through self‑coupling in networks of small‑world and scale‑free topology |
title_short | Stabilization through self‑coupling in networks of small‑world and scale‑free topology |
title_sort | Stabilization through self‑coupling in networks of small‑world and scale‑free topology |
url | https://hdl.handle.net/20.500.12008/42746 |