Geometría a gran escala de Grupos de Heintze

Sequeira Manzino, Emiliano

Supervisor(es): Carrasco Piaggio, Matías

Resumen:

Un teorema de Heintze del 74 ([Hei74]) muestra que toda variedad Riemanniana homogénea, conexa y de curvatura negativa es isométrica a un grupo de Lie soluble G dotado de una métrica invariante por traslaciones a izquierda. El grupo G resulta ser un producto semidirecto N oφ R, donde N es un grupo de Lie nilpotente y φ queda determinado por una derivación α en el álgebra de Lie de N, cuyos valores propios tienen parte real positiva. Estos son los llamados grupos de Heintze y los notamos N oα R. Como la elección de la métrica invariante a izquierda no cambia la clase de cuasiisometría de un grupo de Lie, la geometría a gran escala de estos sólo depende de su estructura como grupos de Lie. De aquí el afán por encontrar invariantes de cuasiisometría algebraicos. La conjetura más importante en este sentido es la siguiente: Dos grupos de Heintze puramente reales son cuasi-isométricos si y sólo si son isomorfos. Se dice que el grupo N oα R es puramente real si α tiene todos sus valores propios reales. Esta conjetura ha sido probada sólo en algunos casos particulares. Existen, sin embargo, algunos resultados un poco más débiles que pueden obtenerse en general, entre ellos la invarianza de ciertas estructuras algebraicas. Se prueba, luego de pasar por la demostración del teorema de Heintze y algunos preliminares, que el polinomio característico de la derivación α (a menos de multiplicarla por un real positivo) es invariante por cuasi-isometrías. Además veremos que si el grupo nilpotente N es un grupo de Heisenberg, entonces la forma de Jordan de la derivación (nuevamente a menos de homotecias) es invariante por cuasi-isometrías.


Detalles Bibliográficos
2017
Geometría a gran escala.
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/21054
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807522820661444608
author Sequeira Manzino, Emiliano
author_facet Sequeira Manzino, Emiliano
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
f2aa16794b0a4ac43b8f31d5617463ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/21054/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/21054/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/21054/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/21054/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/21054/1/tm-sequeira.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Sequeira Manzino Emiliano, Universidad de la República (Uruguay). Facultad de Ciencias
dc.creator.advisor.none.fl_str_mv Carrasco Piaggio, Matías
dc.creator.none.fl_str_mv Sequeira Manzino, Emiliano
dc.date.accessioned.none.fl_str_mv 2019-06-24T18:39:43Z
dc.date.available.none.fl_str_mv 2019-06-24T18:39:43Z
dc.date.issued.none.fl_str_mv 2017
dc.description.abstract.none.fl_txt_mv Un teorema de Heintze del 74 ([Hei74]) muestra que toda variedad Riemanniana homogénea, conexa y de curvatura negativa es isométrica a un grupo de Lie soluble G dotado de una métrica invariante por traslaciones a izquierda. El grupo G resulta ser un producto semidirecto N oφ R, donde N es un grupo de Lie nilpotente y φ queda determinado por una derivación α en el álgebra de Lie de N, cuyos valores propios tienen parte real positiva. Estos son los llamados grupos de Heintze y los notamos N oα R. Como la elección de la métrica invariante a izquierda no cambia la clase de cuasiisometría de un grupo de Lie, la geometría a gran escala de estos sólo depende de su estructura como grupos de Lie. De aquí el afán por encontrar invariantes de cuasiisometría algebraicos. La conjetura más importante en este sentido es la siguiente: Dos grupos de Heintze puramente reales son cuasi-isométricos si y sólo si son isomorfos. Se dice que el grupo N oα R es puramente real si α tiene todos sus valores propios reales. Esta conjetura ha sido probada sólo en algunos casos particulares. Existen, sin embargo, algunos resultados un poco más débiles que pueden obtenerse en general, entre ellos la invarianza de ciertas estructuras algebraicas. Se prueba, luego de pasar por la demostración del teorema de Heintze y algunos preliminares, que el polinomio característico de la derivación α (a menos de multiplicarla por un real positivo) es invariante por cuasi-isometrías. Además veremos que si el grupo nilpotente N es un grupo de Heisenberg, entonces la forma de Jordan de la derivación (nuevamente a menos de homotecias) es invariante por cuasi-isometrías.
dc.format.extent.es.fl_str_mv 87 h.
dc.format.mimetype.en.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Sequeira Manzino, E. Geometría a gran escala de Grupos de Heintze [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2017.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/21054
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv UR.FC.CMAT
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Geometría a gran escala.
dc.title.none.fl_str_mv Geometría a gran escala de Grupos de Heintze
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Un teorema de Heintze del 74 ([Hei74]) muestra que toda variedad Riemanniana homogénea, conexa y de curvatura negativa es isométrica a un grupo de Lie soluble G dotado de una métrica invariante por traslaciones a izquierda. El grupo G resulta ser un producto semidirecto N oφ R, donde N es un grupo de Lie nilpotente y φ queda determinado por una derivación α en el álgebra de Lie de N, cuyos valores propios tienen parte real positiva. Estos son los llamados grupos de Heintze y los notamos N oα R. Como la elección de la métrica invariante a izquierda no cambia la clase de cuasiisometría de un grupo de Lie, la geometría a gran escala de estos sólo depende de su estructura como grupos de Lie. De aquí el afán por encontrar invariantes de cuasiisometría algebraicos. La conjetura más importante en este sentido es la siguiente: Dos grupos de Heintze puramente reales son cuasi-isométricos si y sólo si son isomorfos. Se dice que el grupo N oα R es puramente real si α tiene todos sus valores propios reales. Esta conjetura ha sido probada sólo en algunos casos particulares. Existen, sin embargo, algunos resultados un poco más débiles que pueden obtenerse en general, entre ellos la invarianza de ciertas estructuras algebraicas. Se prueba, luego de pasar por la demostración del teorema de Heintze y algunos preliminares, que el polinomio característico de la derivación α (a menos de multiplicarla por un real positivo) es invariante por cuasi-isometrías. Además veremos que si el grupo nilpotente N es un grupo de Heisenberg, entonces la forma de Jordan de la derivación (nuevamente a menos de homotecias) es invariante por cuasi-isometrías.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_afc27848cc0faf20e16720d510ec435c
identifier_str_mv Sequeira Manzino, E. Geometría a gran escala de Grupos de Heintze [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2017.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/21054
publishDate 2017
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling Sequeira Manzino Emiliano, Universidad de la República (Uruguay). Facultad de Ciencias2019-06-24T18:39:43Z2019-06-24T18:39:43Z2017Sequeira Manzino, E. Geometría a gran escala de Grupos de Heintze [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2017.https://hdl.handle.net/20.500.12008/21054Un teorema de Heintze del 74 ([Hei74]) muestra que toda variedad Riemanniana homogénea, conexa y de curvatura negativa es isométrica a un grupo de Lie soluble G dotado de una métrica invariante por traslaciones a izquierda. El grupo G resulta ser un producto semidirecto N oφ R, donde N es un grupo de Lie nilpotente y φ queda determinado por una derivación α en el álgebra de Lie de N, cuyos valores propios tienen parte real positiva. Estos son los llamados grupos de Heintze y los notamos N oα R. Como la elección de la métrica invariante a izquierda no cambia la clase de cuasiisometría de un grupo de Lie, la geometría a gran escala de estos sólo depende de su estructura como grupos de Lie. De aquí el afán por encontrar invariantes de cuasiisometría algebraicos. La conjetura más importante en este sentido es la siguiente: Dos grupos de Heintze puramente reales son cuasi-isométricos si y sólo si son isomorfos. Se dice que el grupo N oα R es puramente real si α tiene todos sus valores propios reales. Esta conjetura ha sido probada sólo en algunos casos particulares. Existen, sin embargo, algunos resultados un poco más débiles que pueden obtenerse en general, entre ellos la invarianza de ciertas estructuras algebraicas. Se prueba, luego de pasar por la demostración del teorema de Heintze y algunos preliminares, que el polinomio característico de la derivación α (a menos de multiplicarla por un real positivo) es invariante por cuasi-isometrías. Además veremos que si el grupo nilpotente N es un grupo de Heisenberg, entonces la forma de Jordan de la derivación (nuevamente a menos de homotecias) es invariante por cuasi-isometrías.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-06-24T18:39:43Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tm-sequeira.pdf: 554370 bytes, checksum: f2aa16794b0a4ac43b8f31d5617463ef (MD5)Made available in DSpace on 2019-06-24T18:39:43Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tm-sequeira.pdf: 554370 bytes, checksum: f2aa16794b0a4ac43b8f31d5617463ef (MD5) Previous issue date: 201787 h.application/pdfesspaUR.FC.CMATLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Geometría a gran escala.Geometría a gran escala de Grupos de HeintzeTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaSequeira Manzino, EmilianoCarrasco Piaggio, MatíasUniversidad de la República (Uruguay). Facultad de CienciasMagíster en MatemáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/21054/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/21054/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21054/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21054/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtm-sequeira.pdftm-sequeira.pdfapplication/pdf554370http://localhost:8080/xmlui/bitstream/20.500.12008/21054/1/tm-sequeira.pdff2aa16794b0a4ac43b8f31d5617463efMD5120.500.12008/210542022-03-07 08:16:04.03oai:colibri.udelar.edu.uy:20.500.12008/21054VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:03.920971COLIBRI - Universidad de la Repúblicafalse
spellingShingle Geometría a gran escala de Grupos de Heintze
Sequeira Manzino, Emiliano
Geometría a gran escala.
status_str acceptedVersion
title Geometría a gran escala de Grupos de Heintze
title_full Geometría a gran escala de Grupos de Heintze
title_fullStr Geometría a gran escala de Grupos de Heintze
title_full_unstemmed Geometría a gran escala de Grupos de Heintze
title_short Geometría a gran escala de Grupos de Heintze
title_sort Geometría a gran escala de Grupos de Heintze
topic Geometría a gran escala.
url https://hdl.handle.net/20.500.12008/21054