DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies

Camiruaga, Ignacio - Herrera, Andrés - Mozo, Franco

Supervisor(es): Alonso Suárez, Rodrigo - Castro, Alberto - Marchesoni, Franco

Resumen:

This project analyzes deep learning techniques applied to satellite-based cloudiness prediction, a vital component of a solar forecasting solution. The techniques can learn from a dataset to make extrapolation into the future of a sequence of images, a process usually named satellite nowcasting. In this way, intra-day image forecasting is addressed up to 5 hours into the future, with a 10-minute periodicity. The images used are from the GOES-16 geostationary satellite, covering a large portion of southeast South America, including Uruguay, the main region of interest. The new deep learning techniques are compared against strong baselines in the field, such as the persistence and fine-tuned Cloud Motion Vectors strategies, which were previously analyzed for this region in recent studies. Several state-of-the-art architectures are implemented and evaluated over different well-known computer vision metrics as well as forecasting metrics. Our results showed the ability of deep learning models to account for complex atmospheric dynamics and make accurate predictions in a short time span. The main contribution is a deep-learning model based on the U-Net architecture that surpasses in performance all the other state-of-the-art models implemented on this dataset. The new model is presented along with detailed ablation studies and thorough evaluations, that shed light on the behavior and many potential variations of the deep learning solutions.


Detalles Bibliográficos
2022
Solar forecast
U-Net
Deep learning
Satellite images
GOES-16 satellite
Pronóstico solar
Aprendizaje profundo
Imágenes satelitales
Satélite GOES-16
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/32272
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523105469366272
author Camiruaga, Ignacio
author2 Herrera, Andrés
Mozo, Franco
author2_role author
author
author_facet Camiruaga, Ignacio
Herrera, Andrés
Mozo, Franco
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
789b784b5908a1cc22684b38378fe165
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/32272/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/32272/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/32272/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/32272/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/32272/1/CHM22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Camiruaga Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Herrera Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.
Mozo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.coverage.spatial.es.fl_str_mv América del Sur
Uruguay
dc.creator.advisor.none.fl_str_mv Alonso Suárez, Rodrigo
Castro, Alberto
Marchesoni, Franco
dc.creator.none.fl_str_mv Camiruaga, Ignacio
Herrera, Andrés
Mozo, Franco
dc.date.accessioned.none.fl_str_mv 2022-06-21T12:18:28Z
dc.date.available.none.fl_str_mv 2022-06-21T12:18:28Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv This project analyzes deep learning techniques applied to satellite-based cloudiness prediction, a vital component of a solar forecasting solution. The techniques can learn from a dataset to make extrapolation into the future of a sequence of images, a process usually named satellite nowcasting. In this way, intra-day image forecasting is addressed up to 5 hours into the future, with a 10-minute periodicity. The images used are from the GOES-16 geostationary satellite, covering a large portion of southeast South America, including Uruguay, the main region of interest. The new deep learning techniques are compared against strong baselines in the field, such as the persistence and fine-tuned Cloud Motion Vectors strategies, which were previously analyzed for this region in recent studies. Several state-of-the-art architectures are implemented and evaluated over different well-known computer vision metrics as well as forecasting metrics. Our results showed the ability of deep learning models to account for complex atmospheric dynamics and make accurate predictions in a short time span. The main contribution is a deep-learning model based on the U-Net architecture that surpasses in performance all the other state-of-the-art models implemented on this dataset. The new model is presented along with detailed ablation studies and thorough evaluations, that shed light on the behavior and many potential variations of the deep learning solutions.
dc.description.none.fl_txt_mv Títulos obtenidos: Ignacio Camiruaga, Ingeniero en Computación; Andrés Herrera, Ingeniero electricista; Franco Mozo, Ingeniero electricista.
dc.format.extent.es.fl_str_mv 111 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Camiruaga, I., Herrera, A. y Mozo, F. DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE : INCO, 2022.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/32272
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Solar forecast
U-Net
Deep learning
Satellite images
GOES-16 satellite
Pronóstico solar
Aprendizaje profundo
Imágenes satelitales
Satélite GOES-16
dc.title.none.fl_str_mv DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Títulos obtenidos: Ignacio Camiruaga, Ingeniero en Computación; Andrés Herrera, Ingeniero electricista; Franco Mozo, Ingeniero electricista.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_adff5e2b71ca7e951979cc07516a9a40
identifier_str_mv Camiruaga, I., Herrera, A. y Mozo, F. DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE : INCO, 2022.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/32272
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Camiruaga Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Herrera Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.Mozo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.América del SurUruguay2022-06-21T12:18:28Z2022-06-21T12:18:28Z2022Camiruaga, I., Herrera, A. y Mozo, F. DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE : INCO, 2022.https://hdl.handle.net/20.500.12008/32272Títulos obtenidos: Ignacio Camiruaga, Ingeniero en Computación; Andrés Herrera, Ingeniero electricista; Franco Mozo, Ingeniero electricista.This project analyzes deep learning techniques applied to satellite-based cloudiness prediction, a vital component of a solar forecasting solution. The techniques can learn from a dataset to make extrapolation into the future of a sequence of images, a process usually named satellite nowcasting. In this way, intra-day image forecasting is addressed up to 5 hours into the future, with a 10-minute periodicity. The images used are from the GOES-16 geostationary satellite, covering a large portion of southeast South America, including Uruguay, the main region of interest. The new deep learning techniques are compared against strong baselines in the field, such as the persistence and fine-tuned Cloud Motion Vectors strategies, which were previously analyzed for this region in recent studies. Several state-of-the-art architectures are implemented and evaluated over different well-known computer vision metrics as well as forecasting metrics. Our results showed the ability of deep learning models to account for complex atmospheric dynamics and make accurate predictions in a short time span. The main contribution is a deep-learning model based on the U-Net architecture that surpasses in performance all the other state-of-the-art models implemented on this dataset. The new model is presented along with detailed ablation studies and thorough evaluations, that shed light on the behavior and many potential variations of the deep learning solutions.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-06-16T17:38:25Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CHM22.pdf: 31061386 bytes, checksum: 789b784b5908a1cc22684b38378fe165 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-06-20T19:21:12Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CHM22.pdf: 31061386 bytes, checksum: 789b784b5908a1cc22684b38378fe165 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-06-21T12:18:28Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CHM22.pdf: 31061386 bytes, checksum: 789b784b5908a1cc22684b38378fe165 (MD5) Previous issue date: 2022111 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Solar forecastU-NetDeep learningSatellite imagesGOES-16 satellitePronóstico solarAprendizaje profundoImágenes satelitalesSatélite GOES-16DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategiesTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCamiruaga, IgnacioHerrera, AndrésMozo, FrancoAlonso Suárez, RodrigoCastro, AlbertoMarchesoni, FrancoUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero ElectricistaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/32272/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/32272/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/32272/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/32272/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCHM22.pdfCHM22.pdfapplication/pdf31061386http://localhost:8080/xmlui/bitstream/20.500.12008/32272/1/CHM22.pdf789b784b5908a1cc22684b38378fe165MD5120.500.12008/322722024-05-02 11:51:29.407oai:colibri.udelar.edu.uy:20.500.12008/32272VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:53.487546COLIBRI - Universidad de la Repúblicafalse
spellingShingle DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
Camiruaga, Ignacio
Solar forecast
U-Net
Deep learning
Satellite images
GOES-16 satellite
Pronóstico solar
Aprendizaje profundo
Imágenes satelitales
Satélite GOES-16
status_str acceptedVersion
title DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
title_full DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
title_fullStr DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
title_full_unstemmed DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
title_short DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
title_sort DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
topic Solar forecast
U-Net
Deep learning
Satellite images
GOES-16 satellite
Pronóstico solar
Aprendizaje profundo
Imágenes satelitales
Satélite GOES-16
url https://hdl.handle.net/20.500.12008/32272