DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies
Supervisor(es): Alonso Suárez, Rodrigo - Castro, Alberto - Marchesoni, Franco
Resumen:
This project analyzes deep learning techniques applied to satellite-based cloudiness prediction, a vital component of a solar forecasting solution. The techniques can learn from a dataset to make extrapolation into the future of a sequence of images, a process usually named satellite nowcasting. In this way, intra-day image forecasting is addressed up to 5 hours into the future, with a 10-minute periodicity. The images used are from the GOES-16 geostationary satellite, covering a large portion of southeast South America, including Uruguay, the main region of interest. The new deep learning techniques are compared against strong baselines in the field, such as the persistence and fine-tuned Cloud Motion Vectors strategies, which were previously analyzed for this region in recent studies. Several state-of-the-art architectures are implemented and evaluated over different well-known computer vision metrics as well as forecasting metrics. Our results showed the ability of deep learning models to account for complex atmospheric dynamics and make accurate predictions in a short time span. The main contribution is a deep-learning model based on the U-Net architecture that surpasses in performance all the other state-of-the-art models implemented on this dataset. The new model is presented along with detailed ablation studies and thorough evaluations, that shed light on the behavior and many potential variations of the deep learning solutions.
2022 | |
Solar forecast U-Net Deep learning Satellite images GOES-16 satellite Pronóstico solar Aprendizaje profundo Imágenes satelitales Satélite GOES-16 |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/32272 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523105469366272 |
---|---|
author | Camiruaga, Ignacio |
author2 | Herrera, Andrés Mozo, Franco |
author2_role | author author |
author_facet | Camiruaga, Ignacio Herrera, Andrés Mozo, Franco |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 789b784b5908a1cc22684b38378fe165 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/32272/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/32272/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/32272/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/32272/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/32272/1/CHM22.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Camiruaga Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería. Herrera Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería. Mozo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.coverage.spatial.es.fl_str_mv | América del Sur Uruguay |
dc.creator.advisor.none.fl_str_mv | Alonso Suárez, Rodrigo Castro, Alberto Marchesoni, Franco |
dc.creator.none.fl_str_mv | Camiruaga, Ignacio Herrera, Andrés Mozo, Franco |
dc.date.accessioned.none.fl_str_mv | 2022-06-21T12:18:28Z |
dc.date.available.none.fl_str_mv | 2022-06-21T12:18:28Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | This project analyzes deep learning techniques applied to satellite-based cloudiness prediction, a vital component of a solar forecasting solution. The techniques can learn from a dataset to make extrapolation into the future of a sequence of images, a process usually named satellite nowcasting. In this way, intra-day image forecasting is addressed up to 5 hours into the future, with a 10-minute periodicity. The images used are from the GOES-16 geostationary satellite, covering a large portion of southeast South America, including Uruguay, the main region of interest. The new deep learning techniques are compared against strong baselines in the field, such as the persistence and fine-tuned Cloud Motion Vectors strategies, which were previously analyzed for this region in recent studies. Several state-of-the-art architectures are implemented and evaluated over different well-known computer vision metrics as well as forecasting metrics. Our results showed the ability of deep learning models to account for complex atmospheric dynamics and make accurate predictions in a short time span. The main contribution is a deep-learning model based on the U-Net architecture that surpasses in performance all the other state-of-the-art models implemented on this dataset. The new model is presented along with detailed ablation studies and thorough evaluations, that shed light on the behavior and many potential variations of the deep learning solutions. |
dc.description.none.fl_txt_mv | Títulos obtenidos: Ignacio Camiruaga, Ingeniero en Computación; Andrés Herrera, Ingeniero electricista; Franco Mozo, Ingeniero electricista. |
dc.format.extent.es.fl_str_mv | 111 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Camiruaga, I., Herrera, A. y Mozo, F. DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE : INCO, 2022. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/32272 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Udelar.FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Solar forecast U-Net Deep learning Satellite images GOES-16 satellite Pronóstico solar Aprendizaje profundo Imágenes satelitales Satélite GOES-16 |
dc.title.none.fl_str_mv | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Títulos obtenidos: Ignacio Camiruaga, Ingeniero en Computación; Andrés Herrera, Ingeniero electricista; Franco Mozo, Ingeniero electricista. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_adff5e2b71ca7e951979cc07516a9a40 |
identifier_str_mv | Camiruaga, I., Herrera, A. y Mozo, F. DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE : INCO, 2022. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/32272 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Camiruaga Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Herrera Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.Mozo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.América del SurUruguay2022-06-21T12:18:28Z2022-06-21T12:18:28Z2022Camiruaga, I., Herrera, A. y Mozo, F. DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE : INCO, 2022.https://hdl.handle.net/20.500.12008/32272Títulos obtenidos: Ignacio Camiruaga, Ingeniero en Computación; Andrés Herrera, Ingeniero electricista; Franco Mozo, Ingeniero electricista.This project analyzes deep learning techniques applied to satellite-based cloudiness prediction, a vital component of a solar forecasting solution. The techniques can learn from a dataset to make extrapolation into the future of a sequence of images, a process usually named satellite nowcasting. In this way, intra-day image forecasting is addressed up to 5 hours into the future, with a 10-minute periodicity. The images used are from the GOES-16 geostationary satellite, covering a large portion of southeast South America, including Uruguay, the main region of interest. The new deep learning techniques are compared against strong baselines in the field, such as the persistence and fine-tuned Cloud Motion Vectors strategies, which were previously analyzed for this region in recent studies. Several state-of-the-art architectures are implemented and evaluated over different well-known computer vision metrics as well as forecasting metrics. Our results showed the ability of deep learning models to account for complex atmospheric dynamics and make accurate predictions in a short time span. The main contribution is a deep-learning model based on the U-Net architecture that surpasses in performance all the other state-of-the-art models implemented on this dataset. The new model is presented along with detailed ablation studies and thorough evaluations, that shed light on the behavior and many potential variations of the deep learning solutions.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-06-16T17:38:25Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CHM22.pdf: 31061386 bytes, checksum: 789b784b5908a1cc22684b38378fe165 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-06-20T19:21:12Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CHM22.pdf: 31061386 bytes, checksum: 789b784b5908a1cc22684b38378fe165 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-06-21T12:18:28Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CHM22.pdf: 31061386 bytes, checksum: 789b784b5908a1cc22684b38378fe165 (MD5) Previous issue date: 2022111 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Solar forecastU-NetDeep learningSatellite imagesGOES-16 satellitePronóstico solarAprendizaje profundoImágenes satelitalesSatélite GOES-16DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategiesTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCamiruaga, IgnacioHerrera, AndrésMozo, FrancoAlonso Suárez, RodrigoCastro, AlbertoMarchesoni, FrancoUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero ElectricistaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/32272/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/32272/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/32272/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/32272/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCHM22.pdfCHM22.pdfapplication/pdf31061386http://localhost:8080/xmlui/bitstream/20.500.12008/32272/1/CHM22.pdf789b784b5908a1cc22684b38378fe165MD5120.500.12008/322722024-05-02 11:51:29.407oai:colibri.udelar.edu.uy:20.500.12008/32272VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:53.487546COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies Camiruaga, Ignacio Solar forecast U-Net Deep learning Satellite images GOES-16 satellite Pronóstico solar Aprendizaje profundo Imágenes satelitales Satélite GOES-16 |
status_str | acceptedVersion |
title | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies |
title_full | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies |
title_fullStr | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies |
title_full_unstemmed | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies |
title_short | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies |
title_sort | DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies |
topic | Solar forecast U-Net Deep learning Satellite images GOES-16 satellite Pronóstico solar Aprendizaje profundo Imágenes satelitales Satélite GOES-16 |
url | https://hdl.handle.net/20.500.12008/32272 |