Nonparametric regression based on discretely sampled curves
Resumen:
In the context of nonparametric regression, we study conditions under which the consistency (and rates of convergence) of estimators built from discretely sampled curves can be derived from the consistency of estimators based on the unobserved whole trajectories. As a consequence, we derive asymptotic results for most of the regularization techniques used in functional data analysis, including smoothing and basis representation.
2020 | |
Nonparametric regression Functional data Discrete curves |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/33813 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Asymptotic normality of the Nadaraya–Watson estimator for nonstationary functional data and applications to telecommunications
Autor(es):: Bertin, Karine
Fecha de publicación:: (2007) -
Minimum delay load-balancing via nonparametric regression and no-regret algorithms
Autor(es):: Larroca, Federico
Fecha de publicación:: (2012) -
End-to-end quality of service prediction based on functional regression
Autor(es):: Aspirot, Laura
Fecha de publicación:: (2005) -
Back to Administrative Discretion.
Autor(es):: Arias Gayoso, Grethel
Fecha de publicación:: (2016) -
Distributed sparse linear regression
Autor(es):: Mateos, Gonzalo
Fecha de publicación:: (2010)