Toward interpretable polyphonic sound event detection with attention maps based on local prototypes
Resumen:
Understanding the reasons behind the predictions of deep neural networks is a pressing concern as it can be critical in several application scenarios. In this work, we present a novel interpretable model for polyphonic sound event detection. It tackles one of the limitations of our previous work, i.e. the difficulty to deal with a multi-label setting properly. The proposed architecture incorporates a prototype layer and an attention mechanism. The network learns a set of local prototypes in the latent space representing a patch in the input representation. Besides, it learns attention maps for positioning the local prototypes and reconstructing the latent space. Then, the predictions are solely based on the attention maps. Thus, the explanations provided are the attention maps and the corresponding local prototypes. Moreover, one can reconstruct the prototypes to the audio domain for inspection. The obtained results in urban sound event detection are comparable to that of two opaque baselines but with fewer parameters while offering interpretability.
2021 | |
Interpretability Sound event detection Prototypes |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
http://dcase.community/workshop2021/proceedings
http://dcase.community/workshop2021/ http://dcase.community/documents/workshop2021/proceedings/DCASE2021Workshop_Zinemanas_22.pdf https://hdl.handle.net/20.500.12008/29961 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522897926815744 |
---|---|
author | Zinemanas, Pablo |
author2 | Rocamora, Martín Fonseca, Eduardo Font, Frederic Serra, Xavier |
author2_role | author author author author |
author_facet | Zinemanas, Pablo Rocamora, Martín Fonseca, Eduardo Font, Frederic Serra, Xavier |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 cafdce9179646ac811303461b97f9fc6 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/29961/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/29961/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/29961/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/29961/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/29961/1/ZRFFS21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Zinemanas Pablo, Universitat Pompeu Fabra, Barcelona, Spain Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. Fonseca Eduardo, Universitat Pompeu Fabra, Barcelona, Spain Font Frederic, Universitat Pompeu Fabra, Barcelona, Spain Serra Xavier, Universitat Pompeu Fabra, Barcelona, Spain |
dc.creator.none.fl_str_mv | Zinemanas, Pablo Rocamora, Martín Fonseca, Eduardo Font, Frederic Serra, Xavier |
dc.date.accessioned.none.fl_str_mv | 2021-10-25T17:05:00Z |
dc.date.available.none.fl_str_mv | 2021-10-25T17:05:00Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Understanding the reasons behind the predictions of deep neural networks is a pressing concern as it can be critical in several application scenarios. In this work, we present a novel interpretable model for polyphonic sound event detection. It tackles one of the limitations of our previous work, i.e. the difficulty to deal with a multi-label setting properly. The proposed architecture incorporates a prototype layer and an attention mechanism. The network learns a set of local prototypes in the latent space representing a patch in the input representation. Besides, it learns attention maps for positioning the local prototypes and reconstructing the latent space. Then, the predictions are solely based on the attention maps. Thus, the explanations provided are the attention maps and the corresponding local prototypes. Moreover, one can reconstruct the prototypes to the audio domain for inspection. The obtained results in urban sound event detection are comparable to that of two opaque baselines but with fewer parameters while offering interpretability. |
dc.format.extent.es.fl_str_mv | 5 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.en.fl_str_mv | Zinemanas, P., Rocamora, M., Fonseca, E. y otros. Toward interpretable polyphonic sound event detection with attention maps based on local prototypes [en línea]. EN: 6th Workshop on Detection and Classification of Acoustic Scenes and Events, DCASE 2021, Barcelona, Spain, 15-19 nov. 2021, pp. 50-54. |
dc.identifier.uri.none.fl_str_mv | http://dcase.community/workshop2021/proceedings http://dcase.community/workshop2021/ http://dcase.community/documents/workshop2021/proceedings/DCASE2021Workshop_Zinemanas_22.pdf https://hdl.handle.net/20.500.12008/29961 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.en.fl_str_mv | Universitat Pompeu Fabra |
dc.relation.ispartof.es.fl_str_mv | 6th Workshop on Detection and Classification of Acoustic Scenes and Events, DCASE 2021, Barcelona, Spain, 15-19 nov. 2021, pp. 50-54. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Interpretability Sound event detection Prototypes |
dc.title.none.fl_str_mv | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Understanding the reasons behind the predictions of deep neural networks is a pressing concern as it can be critical in several application scenarios. In this work, we present a novel interpretable model for polyphonic sound event detection. It tackles one of the limitations of our previous work, i.e. the difficulty to deal with a multi-label setting properly. The proposed architecture incorporates a prototype layer and an attention mechanism. The network learns a set of local prototypes in the latent space representing a patch in the input representation. Besides, it learns attention maps for positioning the local prototypes and reconstructing the latent space. Then, the predictions are solely based on the attention maps. Thus, the explanations provided are the attention maps and the corresponding local prototypes. Moreover, one can reconstruct the prototypes to the audio domain for inspection. The obtained results in urban sound event detection are comparable to that of two opaque baselines but with fewer parameters while offering interpretability. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_acc0c4454609521b3350513b394f928b |
identifier_str_mv | Zinemanas, P., Rocamora, M., Fonseca, E. y otros. Toward interpretable polyphonic sound event detection with attention maps based on local prototypes [en línea]. EN: 6th Workshop on Detection and Classification of Acoustic Scenes and Events, DCASE 2021, Barcelona, Spain, 15-19 nov. 2021, pp. 50-54. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/29961 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Zinemanas Pablo, Universitat Pompeu Fabra, Barcelona, SpainRocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.Fonseca Eduardo, Universitat Pompeu Fabra, Barcelona, SpainFont Frederic, Universitat Pompeu Fabra, Barcelona, SpainSerra Xavier, Universitat Pompeu Fabra, Barcelona, Spain2021-10-25T17:05:00Z2021-10-25T17:05:00Z2021Zinemanas, P., Rocamora, M., Fonseca, E. y otros. Toward interpretable polyphonic sound event detection with attention maps based on local prototypes [en línea]. EN: 6th Workshop on Detection and Classification of Acoustic Scenes and Events, DCASE 2021, Barcelona, Spain, 15-19 nov. 2021, pp. 50-54.http://dcase.community/workshop2021/proceedingshttp://dcase.community/workshop2021/http://dcase.community/documents/workshop2021/proceedings/DCASE2021Workshop_Zinemanas_22.pdfhttps://hdl.handle.net/20.500.12008/29961Understanding the reasons behind the predictions of deep neural networks is a pressing concern as it can be critical in several application scenarios. In this work, we present a novel interpretable model for polyphonic sound event detection. It tackles one of the limitations of our previous work, i.e. the difficulty to deal with a multi-label setting properly. The proposed architecture incorporates a prototype layer and an attention mechanism. The network learns a set of local prototypes in the latent space representing a patch in the input representation. Besides, it learns attention maps for positioning the local prototypes and reconstructing the latent space. Then, the predictions are solely based on the attention maps. Thus, the explanations provided are the attention maps and the corresponding local prototypes. Moreover, one can reconstruct the prototypes to the audio domain for inspection. The obtained results in urban sound event detection are comparable to that of two opaque baselines but with fewer parameters while offering interpretability.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-10-22T20:45:19Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ZRFFS21.pdf: 741103 bytes, checksum: cafdce9179646ac811303461b97f9fc6 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-10-25T16:51:54Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ZRFFS21.pdf: 741103 bytes, checksum: cafdce9179646ac811303461b97f9fc6 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-10-25T17:05:00Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) ZRFFS21.pdf: 741103 bytes, checksum: cafdce9179646ac811303461b97f9fc6 (MD5) Previous issue date: 20215 p.application/pdfenengUniversitat Pompeu Fabra6th Workshop on Detection and Classification of Acoustic Scenes and Events, DCASE 2021, Barcelona, Spain, 15-19 nov. 2021, pp. 50-54.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)InterpretabilitySound event detectionPrototypesToward interpretable polyphonic sound event detection with attention maps based on local prototypesPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaZinemanas, PabloRocamora, MartínFonseca, EduardoFont, FredericSerra, XavierProcesamiento de SeñalesProcesamiento de AudioLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/29961/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/29961/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/29961/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/29961/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALZRFFS21.pdfZRFFS21.pdfapplication/pdf741103http://localhost:8080/xmlui/bitstream/20.500.12008/29961/1/ZRFFS21.pdfcafdce9179646ac811303461b97f9fc6MD5120.500.12008/299612024-07-24 17:25:46.315oai:colibri.udelar.edu.uy:20.500.12008/29961VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:13.764885COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes Zinemanas, Pablo Interpretability Sound event detection Prototypes |
status_str | publishedVersion |
title | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes |
title_full | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes |
title_fullStr | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes |
title_full_unstemmed | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes |
title_short | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes |
title_sort | Toward interpretable polyphonic sound event detection with attention maps based on local prototypes |
topic | Interpretability Sound event detection Prototypes |
url | http://dcase.community/workshop2021/proceedings http://dcase.community/workshop2021/ http://dcase.community/documents/workshop2021/proceedings/DCASE2021Workshop_Zinemanas_22.pdf https://hdl.handle.net/20.500.12008/29961 |