Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI

Fernández, Santiago - Martínez, Emilio - Varela, Gabriel

Supervisor(es): Larroca, Federico - Musé, Pablo

Resumen:

Con el uso universal del aprendizaje profundo o deep learning en la mayoría de aplicaciones en la ingeniería, ciencia y también en la vida cotidiana, es natural que surja la siguiente pregunta: ¿es posible también aplicar deep learning en el espionaje? La respuesta es sí, y en este trabajo se toma como foco de análisis las señales electromagnéticas involuntarias producidas por dispositivos electrónicos. El espionaje de este tipo de señales es conocido como “TEMPEST”. En este trabajo, se interceptan en particular las señales producidas por el cable utilizado en el popular protocolo High-Definition Multimedia Interface (HDMI) para audio y video. En este proyecto llamado “deep-tempest” se realiza como prueba de concepto el ejercicio de reconstruir imágenes espiadas a monitores, donde se utiliza una antena como medio para capturar e inferir las imágenes visualizadas en el monitor. Con ese objetivo en mente, se utilizan redes profundas convolucionales para mejorar la visualización de imágenes espiadas a monitores, los cuales se conectan a una computadora mediante cable HDMI. El trabajo extiende el proyecto “gr-tempest” que con el simple uso de una antena, un SDR (Software Defined Radio) y el framework de software libre de GNU Radio permite interceptar una imagen similar a la desplegada en el monitor espiado, pero siendo esta una versión de menor calidad debido a las características de la transmisión HDMI y la degradación por el proceso de captura. En el trabajo se modela la degradación de la imagen al ser interceptada y se desarrollan métodos de reconstrucción de las imágenes para luego ser comparados mediante métricas de desempeño, con especial énfasis en la recuperación de texto. Se alcanzan resultados sustancialmente superiores al trabajo que precede a este. En particular para el reconocimiento de texto mediante Optical Character Recognition (OCR) se superan los trabajos anteriores en un 61% del reconocimiento de letras presentes en las imágenes capturadas. Los resultados obtenidos del espionaje sirven para concientizar los posibles peligros del uso de monitores con este tipo de cable. Tanto el código desarrollado como la base de datos construida quedan a libre disposición para cualquier trabajo posterior. A su vez, también en se mencionan contramedidas a las que puede recurrir un usuario de computadora para protegerse de estos métodos, evitando la usurpación de posible información sensible de la persona (mensajes privados, contraseñas, etc).


Detalles Bibliográficos
2023
TEMPEST
Emanaciones Electromagnéticas Involuntarias
Software Defined Radio
Espionaje
Aprendizaje Profundo
Contramedidas de Protección
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/42004
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523106467610624
author Fernández, Santiago
author2 Martínez, Emilio
Varela, Gabriel
author2_role author
author
author_facet Fernández, Santiago
Martínez, Emilio
Varela, Gabriel
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
f30b6ca770af12b4159222a704b4acea
489f03e71d39068f329bdec8798bce58
d9d1fb3875271582912082a579680f23
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/42004/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/42004/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/42004/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/42004/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/42004/1/FMV23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Fernández Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.
Martínez Emilio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Varela Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Larroca, Federico
Musé, Pablo
dc.creator.none.fl_str_mv Fernández, Santiago
Martínez, Emilio
Varela, Gabriel
dc.date.accessioned.none.fl_str_mv 2023-12-27T13:54:55Z
dc.date.available.none.fl_str_mv 2023-12-27T13:54:55Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Con el uso universal del aprendizaje profundo o deep learning en la mayoría de aplicaciones en la ingeniería, ciencia y también en la vida cotidiana, es natural que surja la siguiente pregunta: ¿es posible también aplicar deep learning en el espionaje? La respuesta es sí, y en este trabajo se toma como foco de análisis las señales electromagnéticas involuntarias producidas por dispositivos electrónicos. El espionaje de este tipo de señales es conocido como “TEMPEST”. En este trabajo, se interceptan en particular las señales producidas por el cable utilizado en el popular protocolo High-Definition Multimedia Interface (HDMI) para audio y video. En este proyecto llamado “deep-tempest” se realiza como prueba de concepto el ejercicio de reconstruir imágenes espiadas a monitores, donde se utiliza una antena como medio para capturar e inferir las imágenes visualizadas en el monitor. Con ese objetivo en mente, se utilizan redes profundas convolucionales para mejorar la visualización de imágenes espiadas a monitores, los cuales se conectan a una computadora mediante cable HDMI. El trabajo extiende el proyecto “gr-tempest” que con el simple uso de una antena, un SDR (Software Defined Radio) y el framework de software libre de GNU Radio permite interceptar una imagen similar a la desplegada en el monitor espiado, pero siendo esta una versión de menor calidad debido a las características de la transmisión HDMI y la degradación por el proceso de captura. En el trabajo se modela la degradación de la imagen al ser interceptada y se desarrollan métodos de reconstrucción de las imágenes para luego ser comparados mediante métricas de desempeño, con especial énfasis en la recuperación de texto. Se alcanzan resultados sustancialmente superiores al trabajo que precede a este. En particular para el reconocimiento de texto mediante Optical Character Recognition (OCR) se superan los trabajos anteriores en un 61% del reconocimiento de letras presentes en las imágenes capturadas. Los resultados obtenidos del espionaje sirven para concientizar los posibles peligros del uso de monitores con este tipo de cable. Tanto el código desarrollado como la base de datos construida quedan a libre disposición para cualquier trabajo posterior. A su vez, también en se mencionan contramedidas a las que puede recurrir un usuario de computadora para protegerse de estos métodos, evitando la usurpación de posible información sensible de la persona (mensajes privados, contraseñas, etc).
dc.description.es.fl_txt_mv El PDF incluye la documentación final junto al artículo del Proyecto de Fin de Carrera.
dc.format.extent.es.fl_str_mv 102 p. + 8 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Fernández, S., Martínez, E. y Varela, G. Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/42004
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv TEMPEST
Emanaciones Electromagnéticas Involuntarias
Software Defined Radio
Espionaje
Aprendizaje Profundo
Contramedidas de Protección
dc.title.none.fl_str_mv Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El PDF incluye la documentación final junto al artículo del Proyecto de Fin de Carrera.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_ac4a8249331dd1a5b7e786ecaf6ab7f6
identifier_str_mv Fernández, S., Martínez, E. y Varela, G. Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/42004
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Fernández Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.Martínez Emilio, Universidad de la República (Uruguay). Facultad de Ingeniería.Varela Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-12-27T13:54:55Z2023-12-27T13:54:55Z2023Fernández, S., Martínez, E. y Varela, G. Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.https://hdl.handle.net/20.500.12008/42004El PDF incluye la documentación final junto al artículo del Proyecto de Fin de Carrera.Con el uso universal del aprendizaje profundo o deep learning en la mayoría de aplicaciones en la ingeniería, ciencia y también en la vida cotidiana, es natural que surja la siguiente pregunta: ¿es posible también aplicar deep learning en el espionaje? La respuesta es sí, y en este trabajo se toma como foco de análisis las señales electromagnéticas involuntarias producidas por dispositivos electrónicos. El espionaje de este tipo de señales es conocido como “TEMPEST”. En este trabajo, se interceptan en particular las señales producidas por el cable utilizado en el popular protocolo High-Definition Multimedia Interface (HDMI) para audio y video. En este proyecto llamado “deep-tempest” se realiza como prueba de concepto el ejercicio de reconstruir imágenes espiadas a monitores, donde se utiliza una antena como medio para capturar e inferir las imágenes visualizadas en el monitor. Con ese objetivo en mente, se utilizan redes profundas convolucionales para mejorar la visualización de imágenes espiadas a monitores, los cuales se conectan a una computadora mediante cable HDMI. El trabajo extiende el proyecto “gr-tempest” que con el simple uso de una antena, un SDR (Software Defined Radio) y el framework de software libre de GNU Radio permite interceptar una imagen similar a la desplegada en el monitor espiado, pero siendo esta una versión de menor calidad debido a las características de la transmisión HDMI y la degradación por el proceso de captura. En el trabajo se modela la degradación de la imagen al ser interceptada y se desarrollan métodos de reconstrucción de las imágenes para luego ser comparados mediante métricas de desempeño, con especial énfasis en la recuperación de texto. Se alcanzan resultados sustancialmente superiores al trabajo que precede a este. En particular para el reconocimiento de texto mediante Optical Character Recognition (OCR) se superan los trabajos anteriores en un 61% del reconocimiento de letras presentes en las imágenes capturadas. Los resultados obtenidos del espionaje sirven para concientizar los posibles peligros del uso de monitores con este tipo de cable. Tanto el código desarrollado como la base de datos construida quedan a libre disposición para cualquier trabajo posterior. A su vez, también en se mencionan contramedidas a las que puede recurrir un usuario de computadora para protegerse de estos métodos, evitando la usurpación de posible información sensible de la persona (mensajes privados, contraseñas, etc).Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-12-22T21:31:01Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) FMV23.pdf: 96137861 bytes, checksum: d9d1fb3875271582912082a579680f23 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-12-27T12:54:09Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) FMV23.pdf: 96137861 bytes, checksum: d9d1fb3875271582912082a579680f23 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-12-27T13:54:55Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) FMV23.pdf: 96137861 bytes, checksum: d9d1fb3875271582912082a579680f23 (MD5) Previous issue date: 2023102 p. + 8 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)TEMPESTEmanaciones Electromagnéticas InvoluntariasSoftware Defined RadioEspionajeAprendizaje ProfundoContramedidas de ProtecciónDeep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMITesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFernández, SantiagoMartínez, EmilioVarela, GabrielLarroca, FedericoMusé, PabloUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero ElectricistaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42004/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/42004/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822658http://localhost:8080/xmlui/bitstream/20.500.12008/42004/3/license_textf30b6ca770af12b4159222a704b4aceaMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/42004/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALFMV23.pdfFMV23.pdfapplication/pdf96137861http://localhost:8080/xmlui/bitstream/20.500.12008/42004/1/FMV23.pdfd9d1fb3875271582912082a579680f23MD5120.500.12008/420042024-04-12 14:05:07.092oai:colibri.udelar.edu.uy:20.500.12008/42004VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:55.049475COLIBRI - Universidad de la Repúblicafalse
spellingShingle Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
Fernández, Santiago
TEMPEST
Emanaciones Electromagnéticas Involuntarias
Software Defined Radio
Espionaje
Aprendizaje Profundo
Contramedidas de Protección
status_str acceptedVersion
title Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
title_full Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
title_fullStr Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
title_full_unstemmed Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
title_short Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
title_sort Deep-tempest : Aprendizaje profundo para reconstrucción de imágenes obtenidas de emanaciones electromagnéticas en monitores HDMI
topic TEMPEST
Emanaciones Electromagnéticas Involuntarias
Software Defined Radio
Espionaje
Aprendizaje Profundo
Contramedidas de Protección
url https://hdl.handle.net/20.500.12008/42004