Vector representation of Internet domain names using Word embedding techniques

López Anzolabehere, Waldemar Joel

Supervisor(es): Rodríguez-Bocca, Pablo

Resumen:

Word embeddings is a well-known set of techniques widely used in natural language processing ( NLP ). This thesis explores the use of word embeddings in a new scenario. A vector space model ( VSM) for Internet domain names ( DNS) is created by taking core ideas from NLP techniques and applying them to real anonymized DNS log queries from a large Internet Service Provider ( ISP) . The main goal is to find semantically similar domains only using information of DNS queries without any other knowledge about the content of those domains. A set of transformations through a detailed preprocessing pipeline with eight specific steps is defined to move the original problem to a problem in the NLP field. Once the preprocessing pipeline is applied and the DNS log files are transformed to a standard text corpus, we show that state-of-the-art techniques for word embeddings can be successfully applied in order to build what we called a DNS-VSM (a vector space model for Internet domain names). Different word embeddings techniques are evaluated in this work: Word2Vec (with Skip-Gram and CBOW architectures), App2Vec (with a CBOW architecture and adding time gaps between DNS queries), and FastText (which includes sub-word information). The obtained results are compared using various metrics from Information Retrieval theory and the quality of the learned vectors is validated with a third party source, namely, similar sites service offered by Alexa Internet, Inc2 . Due to intrinsic characteristics of domain names, we found that FastText is the best option for building a vector space model for DNS. Furthermore, its performance (considering the top 3 most similar learned vectors to each domain) is compared against two baseline methods: Random Guessing (returning randomly any domain name from the dataset) and Zero Rule (returning always the same most popular domains), outperforming both of them considerably. The results presented in this work can be useful in many engineering activities, with practical application in many areas. Some examples include websites recommendations based on similar sites, competitive analysis, identification of fraudulent or risky sites, parental-control systems, UX improvements (based on recommendations, spell correction, etc.), click-stream analysis, representation and clustering of users navigation profiles, optimization of cache systems in recursive DNS resolvers (among others). Finally, as a contribution to the research community a set of vectors of the DNS-VSM trained on a similar dataset to the one used in this thesis is released and made available for download through the github page in [1]. With this we hope that further work and research can be done using these vectors.


La vectorización de palabras es un conjunto de técnicas bien conocidas y ampliamente usadas en el procesamiento del lenguaje natural ( PLN ). Esta tesis explora el uso de vectorización de palabras en un nuevo escenario. Un modelo de espacio vectorial ( VSM) para nombres de dominios de Internet ( DNS ) es creado tomando ideas fundamentales de PLN, l as cuales son aplicadas a consultas reales anonimizadas de logs de DNS de un gran proveedor de servicios de Internet ( ISP) . El objetivo principal es encontrar dominios relacionados semánticamente solamente usando información de consultas DNS sin ningún otro conocimiento sobre el contenido de esos dominios. Un conjunto de transformaciones a través de un detallado pipeline de preprocesamiento con ocho pasos específicos es definido para llevar el problema original a un problema en el campo de PLN. Una vez aplicado el pipeline de preprocesamiento y los logs de DNS son transformados a un corpus de texto estándar, se muestra que es posible utilizar con éxito técnicas del estado del arte respecto a vectorización de palabras para construir lo que denominamos un DNS-VSM (un modelo de espacio vectorial para nombres de dominio de Internet). Diferentes técnicas de vectorización de palabras son evaluadas en este trabajo: Word2Vec (con arquitectura Skip-Gram y CBOW) , App2Vec (con arquitectura CBOW y agregando intervalos de tiempo entre consultas DNS ), y FastText (incluyendo información a nivel de sub-palabra). Los resultados obtenidos se comparan usando varias métricas de la teoría de Recuperación de Información y la calidad de los vectores aprendidos es validada por una fuente externa, un servicio para obtener sitios similares ofrecido por Alexa Internet, Inc . Debido a características intrínsecas de los nombres de dominio, encontramos que FastText es la mejor opción para construir un modelo de espacio vectorial para DNS . Además, su performance es comparada contra dos métodos de línea base: Random Guessing (devolviendo cualquier nombre de dominio del dataset de forma aleatoria) y Zero Rule (devolviendo siempre los mismos dominios más populares), superando a ambos de manera considerable. Los resultados presentados en este trabajo pueden ser útiles en muchas actividades de ingeniería, con aplicación práctica en muchas áreas. Algunos ejemplos incluyen recomendaciones de sitios web, análisis competitivo, identificación de sitios riesgosos o fraudulentos, sistemas de control parental, mejoras de UX (basada en recomendaciones, corrección ortográfica, etc.), análisis de flujo de clics, representación y clustering de perfiles de navegación de usuarios, optimización de sistemas de cache en resolutores de DNS recursivos (entre otros). Por último, como contribución a la comunidad académica, un conjunto de vectores del DNS-VSM entrenado sobre un juego de datos similar al utilizado en esta tesis es liberado y hecho disponible para descarga a través de la página github en [1]. Con esto esperamos a que más trabajos e investigaciones puedan realizarse usando estos vectores.


Detalles Bibliográficos
2019
DNS
VSM
Word embeddings
Word2vec
FastText
App2vec
Semantic Similarity
Natural Language Processing (NLP)
Vectorización de palabras
Similitud semántica
Procesamiento de Lenguaje Natural (PLN)
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/27783
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182294335488
author López Anzolabehere, Waldemar Joel
author_facet López Anzolabehere, Waldemar Joel
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
d5f9ad93a2a8b7d9f5f206b01b6b570d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/27783/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/27783/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/27783/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/27783/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/27783/1/Lop19.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv López Anzolabehere Waldemar Joel, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Rodríguez-Bocca, Pablo
dc.creator.none.fl_str_mv López Anzolabehere, Waldemar Joel
dc.date.accessioned.none.fl_str_mv 2021-05-20T14:43:13Z
dc.date.available.none.fl_str_mv 2021-05-20T14:43:13Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv Word embeddings is a well-known set of techniques widely used in natural language processing ( NLP ). This thesis explores the use of word embeddings in a new scenario. A vector space model ( VSM) for Internet domain names ( DNS) is created by taking core ideas from NLP techniques and applying them to real anonymized DNS log queries from a large Internet Service Provider ( ISP) . The main goal is to find semantically similar domains only using information of DNS queries without any other knowledge about the content of those domains. A set of transformations through a detailed preprocessing pipeline with eight specific steps is defined to move the original problem to a problem in the NLP field. Once the preprocessing pipeline is applied and the DNS log files are transformed to a standard text corpus, we show that state-of-the-art techniques for word embeddings can be successfully applied in order to build what we called a DNS-VSM (a vector space model for Internet domain names). Different word embeddings techniques are evaluated in this work: Word2Vec (with Skip-Gram and CBOW architectures), App2Vec (with a CBOW architecture and adding time gaps between DNS queries), and FastText (which includes sub-word information). The obtained results are compared using various metrics from Information Retrieval theory and the quality of the learned vectors is validated with a third party source, namely, similar sites service offered by Alexa Internet, Inc2 . Due to intrinsic characteristics of domain names, we found that FastText is the best option for building a vector space model for DNS. Furthermore, its performance (considering the top 3 most similar learned vectors to each domain) is compared against two baseline methods: Random Guessing (returning randomly any domain name from the dataset) and Zero Rule (returning always the same most popular domains), outperforming both of them considerably. The results presented in this work can be useful in many engineering activities, with practical application in many areas. Some examples include websites recommendations based on similar sites, competitive analysis, identification of fraudulent or risky sites, parental-control systems, UX improvements (based on recommendations, spell correction, etc.), click-stream analysis, representation and clustering of users navigation profiles, optimization of cache systems in recursive DNS resolvers (among others). Finally, as a contribution to the research community a set of vectors of the DNS-VSM trained on a similar dataset to the one used in this thesis is released and made available for download through the github page in [1]. With this we hope that further work and research can be done using these vectors.
La vectorización de palabras es un conjunto de técnicas bien conocidas y ampliamente usadas en el procesamiento del lenguaje natural ( PLN ). Esta tesis explora el uso de vectorización de palabras en un nuevo escenario. Un modelo de espacio vectorial ( VSM) para nombres de dominios de Internet ( DNS ) es creado tomando ideas fundamentales de PLN, l as cuales son aplicadas a consultas reales anonimizadas de logs de DNS de un gran proveedor de servicios de Internet ( ISP) . El objetivo principal es encontrar dominios relacionados semánticamente solamente usando información de consultas DNS sin ningún otro conocimiento sobre el contenido de esos dominios. Un conjunto de transformaciones a través de un detallado pipeline de preprocesamiento con ocho pasos específicos es definido para llevar el problema original a un problema en el campo de PLN. Una vez aplicado el pipeline de preprocesamiento y los logs de DNS son transformados a un corpus de texto estándar, se muestra que es posible utilizar con éxito técnicas del estado del arte respecto a vectorización de palabras para construir lo que denominamos un DNS-VSM (un modelo de espacio vectorial para nombres de dominio de Internet). Diferentes técnicas de vectorización de palabras son evaluadas en este trabajo: Word2Vec (con arquitectura Skip-Gram y CBOW) , App2Vec (con arquitectura CBOW y agregando intervalos de tiempo entre consultas DNS ), y FastText (incluyendo información a nivel de sub-palabra). Los resultados obtenidos se comparan usando varias métricas de la teoría de Recuperación de Información y la calidad de los vectores aprendidos es validada por una fuente externa, un servicio para obtener sitios similares ofrecido por Alexa Internet, Inc . Debido a características intrínsecas de los nombres de dominio, encontramos que FastText es la mejor opción para construir un modelo de espacio vectorial para DNS . Además, su performance es comparada contra dos métodos de línea base: Random Guessing (devolviendo cualquier nombre de dominio del dataset de forma aleatoria) y Zero Rule (devolviendo siempre los mismos dominios más populares), superando a ambos de manera considerable. Los resultados presentados en este trabajo pueden ser útiles en muchas actividades de ingeniería, con aplicación práctica en muchas áreas. Algunos ejemplos incluyen recomendaciones de sitios web, análisis competitivo, identificación de sitios riesgosos o fraudulentos, sistemas de control parental, mejoras de UX (basada en recomendaciones, corrección ortográfica, etc.), análisis de flujo de clics, representación y clustering de perfiles de navegación de usuarios, optimización de sistemas de cache en resolutores de DNS recursivos (entre otros). Por último, como contribución a la comunidad académica, un conjunto de vectores del DNS-VSM entrenado sobre un juego de datos similar al utilizado en esta tesis es liberado y hecho disponible para descarga a través de la página github en [1]. Con esto esperamos a que más trabajos e investigaciones puedan realizarse usando estos vectores.
dc.format.extent.es.fl_str_mv 190 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv López Anzolabehere, W. Vector representation of Internet domain names using Word embedding techniques [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2019.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/27783
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv DNS
VSM
Word embeddings
Word2vec
FastText
App2vec
Semantic Similarity
Natural Language Processing (NLP)
Vectorización de palabras
Similitud semántica
Procesamiento de Lenguaje Natural (PLN)
dc.title.none.fl_str_mv Vector representation of Internet domain names using Word embedding techniques
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Word embeddings is a well-known set of techniques widely used in natural language processing ( NLP ). This thesis explores the use of word embeddings in a new scenario. A vector space model ( VSM) for Internet domain names ( DNS) is created by taking core ideas from NLP techniques and applying them to real anonymized DNS log queries from a large Internet Service Provider ( ISP) . The main goal is to find semantically similar domains only using information of DNS queries without any other knowledge about the content of those domains. A set of transformations through a detailed preprocessing pipeline with eight specific steps is defined to move the original problem to a problem in the NLP field. Once the preprocessing pipeline is applied and the DNS log files are transformed to a standard text corpus, we show that state-of-the-art techniques for word embeddings can be successfully applied in order to build what we called a DNS-VSM (a vector space model for Internet domain names). Different word embeddings techniques are evaluated in this work: Word2Vec (with Skip-Gram and CBOW architectures), App2Vec (with a CBOW architecture and adding time gaps between DNS queries), and FastText (which includes sub-word information). The obtained results are compared using various metrics from Information Retrieval theory and the quality of the learned vectors is validated with a third party source, namely, similar sites service offered by Alexa Internet, Inc2 . Due to intrinsic characteristics of domain names, we found that FastText is the best option for building a vector space model for DNS. Furthermore, its performance (considering the top 3 most similar learned vectors to each domain) is compared against two baseline methods: Random Guessing (returning randomly any domain name from the dataset) and Zero Rule (returning always the same most popular domains), outperforming both of them considerably. The results presented in this work can be useful in many engineering activities, with practical application in many areas. Some examples include websites recommendations based on similar sites, competitive analysis, identification of fraudulent or risky sites, parental-control systems, UX improvements (based on recommendations, spell correction, etc.), click-stream analysis, representation and clustering of users navigation profiles, optimization of cache systems in recursive DNS resolvers (among others). Finally, as a contribution to the research community a set of vectors of the DNS-VSM trained on a similar dataset to the one used in this thesis is released and made available for download through the github page in [1]. With this we hope that further work and research can be done using these vectors.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_aa1e9e799e9774410a3dadb2549da9de
identifier_str_mv López Anzolabehere, W. Vector representation of Internet domain names using Word embedding techniques [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2019.
1688-2792
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/27783
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling López Anzolabehere Waldemar Joel, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-05-20T14:43:13Z2021-05-20T14:43:13Z2019López Anzolabehere, W. Vector representation of Internet domain names using Word embedding techniques [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2019.1688-2792https://hdl.handle.net/20.500.12008/27783Word embeddings is a well-known set of techniques widely used in natural language processing ( NLP ). This thesis explores the use of word embeddings in a new scenario. A vector space model ( VSM) for Internet domain names ( DNS) is created by taking core ideas from NLP techniques and applying them to real anonymized DNS log queries from a large Internet Service Provider ( ISP) . The main goal is to find semantically similar domains only using information of DNS queries without any other knowledge about the content of those domains. A set of transformations through a detailed preprocessing pipeline with eight specific steps is defined to move the original problem to a problem in the NLP field. Once the preprocessing pipeline is applied and the DNS log files are transformed to a standard text corpus, we show that state-of-the-art techniques for word embeddings can be successfully applied in order to build what we called a DNS-VSM (a vector space model for Internet domain names). Different word embeddings techniques are evaluated in this work: Word2Vec (with Skip-Gram and CBOW architectures), App2Vec (with a CBOW architecture and adding time gaps between DNS queries), and FastText (which includes sub-word information). The obtained results are compared using various metrics from Information Retrieval theory and the quality of the learned vectors is validated with a third party source, namely, similar sites service offered by Alexa Internet, Inc2 . Due to intrinsic characteristics of domain names, we found that FastText is the best option for building a vector space model for DNS. Furthermore, its performance (considering the top 3 most similar learned vectors to each domain) is compared against two baseline methods: Random Guessing (returning randomly any domain name from the dataset) and Zero Rule (returning always the same most popular domains), outperforming both of them considerably. The results presented in this work can be useful in many engineering activities, with practical application in many areas. Some examples include websites recommendations based on similar sites, competitive analysis, identification of fraudulent or risky sites, parental-control systems, UX improvements (based on recommendations, spell correction, etc.), click-stream analysis, representation and clustering of users navigation profiles, optimization of cache systems in recursive DNS resolvers (among others). Finally, as a contribution to the research community a set of vectors of the DNS-VSM trained on a similar dataset to the one used in this thesis is released and made available for download through the github page in [1]. With this we hope that further work and research can be done using these vectors.La vectorización de palabras es un conjunto de técnicas bien conocidas y ampliamente usadas en el procesamiento del lenguaje natural ( PLN ). Esta tesis explora el uso de vectorización de palabras en un nuevo escenario. Un modelo de espacio vectorial ( VSM) para nombres de dominios de Internet ( DNS ) es creado tomando ideas fundamentales de PLN, l as cuales son aplicadas a consultas reales anonimizadas de logs de DNS de un gran proveedor de servicios de Internet ( ISP) . El objetivo principal es encontrar dominios relacionados semánticamente solamente usando información de consultas DNS sin ningún otro conocimiento sobre el contenido de esos dominios. Un conjunto de transformaciones a través de un detallado pipeline de preprocesamiento con ocho pasos específicos es definido para llevar el problema original a un problema en el campo de PLN. Una vez aplicado el pipeline de preprocesamiento y los logs de DNS son transformados a un corpus de texto estándar, se muestra que es posible utilizar con éxito técnicas del estado del arte respecto a vectorización de palabras para construir lo que denominamos un DNS-VSM (un modelo de espacio vectorial para nombres de dominio de Internet). Diferentes técnicas de vectorización de palabras son evaluadas en este trabajo: Word2Vec (con arquitectura Skip-Gram y CBOW) , App2Vec (con arquitectura CBOW y agregando intervalos de tiempo entre consultas DNS ), y FastText (incluyendo información a nivel de sub-palabra). Los resultados obtenidos se comparan usando varias métricas de la teoría de Recuperación de Información y la calidad de los vectores aprendidos es validada por una fuente externa, un servicio para obtener sitios similares ofrecido por Alexa Internet, Inc . Debido a características intrínsecas de los nombres de dominio, encontramos que FastText es la mejor opción para construir un modelo de espacio vectorial para DNS . Además, su performance es comparada contra dos métodos de línea base: Random Guessing (devolviendo cualquier nombre de dominio del dataset de forma aleatoria) y Zero Rule (devolviendo siempre los mismos dominios más populares), superando a ambos de manera considerable. Los resultados presentados en este trabajo pueden ser útiles en muchas actividades de ingeniería, con aplicación práctica en muchas áreas. Algunos ejemplos incluyen recomendaciones de sitios web, análisis competitivo, identificación de sitios riesgosos o fraudulentos, sistemas de control parental, mejoras de UX (basada en recomendaciones, corrección ortográfica, etc.), análisis de flujo de clics, representación y clustering de perfiles de navegación de usuarios, optimización de sistemas de cache en resolutores de DNS recursivos (entre otros). Por último, como contribución a la comunidad académica, un conjunto de vectores del DNS-VSM entrenado sobre un juego de datos similar al utilizado en esta tesis es liberado y hecho disponible para descarga a través de la página github en [1]. Con esto esperamos a que más trabajos e investigaciones puedan realizarse usando estos vectores.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2021-05-20T14:28:39Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Lop19.pdf: 5578596 bytes, checksum: d5f9ad93a2a8b7d9f5f206b01b6b570d (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-05-20T14:36:23Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Lop19.pdf: 5578596 bytes, checksum: d5f9ad93a2a8b7d9f5f206b01b6b570d (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-05-20T14:43:13Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Lop19.pdf: 5578596 bytes, checksum: d5f9ad93a2a8b7d9f5f206b01b6b570d (MD5) Previous issue date: 2019190 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)DNSVSMWord embeddingsWord2vecFastTextApp2vecSemantic SimilarityNatural Language Processing (NLP)Vectorización de palabrasSimilitud semánticaProcesamiento de Lenguaje Natural (PLN)Vector representation of Internet domain names using Word embedding techniquesTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLópez Anzolabehere, Waldemar JoelRodríguez-Bocca, PabloUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/27783/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/27783/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/27783/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/27783/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALLop19.pdfLop19.pdfapplication/pdf5578596http://localhost:8080/xmlui/bitstream/20.500.12008/27783/1/Lop19.pdfd5f9ad93a2a8b7d9f5f206b01b6b570dMD5120.500.12008/277832021-05-20 11:43:13.452oai:colibri.udelar.edu.uy:20.500.12008/27783VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:27.294391COLIBRI - Universidad de la Repúblicafalse
spellingShingle Vector representation of Internet domain names using Word embedding techniques
López Anzolabehere, Waldemar Joel
DNS
VSM
Word embeddings
Word2vec
FastText
App2vec
Semantic Similarity
Natural Language Processing (NLP)
Vectorización de palabras
Similitud semántica
Procesamiento de Lenguaje Natural (PLN)
status_str acceptedVersion
title Vector representation of Internet domain names using Word embedding techniques
title_full Vector representation of Internet domain names using Word embedding techniques
title_fullStr Vector representation of Internet domain names using Word embedding techniques
title_full_unstemmed Vector representation of Internet domain names using Word embedding techniques
title_short Vector representation of Internet domain names using Word embedding techniques
title_sort Vector representation of Internet domain names using Word embedding techniques
topic DNS
VSM
Word embeddings
Word2vec
FastText
App2vec
Semantic Similarity
Natural Language Processing (NLP)
Vectorización de palabras
Similitud semántica
Procesamiento de Lenguaje Natural (PLN)
url https://hdl.handle.net/20.500.12008/27783