End–to–end convolutional neural networks for sound event detection in urban environments.

Zinemanas, Pablo - Cancela, Pablo - Rocamora, Martín

Resumen:

We present a novel approach to tackle the problem of sound event detection (SED) in urban environments using end-to-end convolutional neural networks (CNN). It consists of a 1D CNN for extracting the energy on mel–frequency bands from the audio signal based on a simple filter bank, followed by a 2D CNN for the classification task. The main goal of this two-stage architecture is to bring more interpretability to the first layers of the network and to permit their reutilization in other problems of same the domain. We present a novel model to calculate the mel–spectrogam using a neural network that outperforms an existing work, both in its simplicity and its matching performance. Also,we implement a recently proposed approach to normalize the energy of the mel–spectrogram (per channel energy normalization, PCEN) as a layer of the neural network. We show how the parameters of this normalization can be learned by the network and why this is useful for SED on urban environments. We study how the training modifies the filter bank as well as the PCEN normalization parameters. The obtained system achieves classification results that are comparable to the state–of–the–art, while decreasing the number of parameters involved


Detalles Bibliográficos
2019
Sound Event Detection (SED)
Convolutional Neural Networks (CNN)
Per Channel Energy Normalization (PCEN)
Inglés
Universidad de la República
COLIBRI
https://www.fruct.org/publications/volume-24/fruct24/
https://hdl.handle.net/20.500.12008/46271
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1813049186754494464
author Zinemanas, Pablo
author2 Cancela, Pablo
Rocamora, Martín
author2_role author
author
author_facet Zinemanas, Pablo
Cancela, Pablo
Rocamora, Martín
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
df0749cf944f9d2754bc76e8ce56250c
13adb202270a5f7cee03e795b33133c4
9fae9fcfba1cddd92fef28915620b349
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/46271/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/46271/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/46271/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/46271/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/46271/1/ZCR19.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Zinemanas Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Cancela Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Zinemanas, Pablo
Cancela, Pablo
Rocamora, Martín
dc.date.accessioned.none.fl_str_mv 2024-10-11T15:13:04Z
dc.date.available.none.fl_str_mv 2024-10-11T15:13:04Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv We present a novel approach to tackle the problem of sound event detection (SED) in urban environments using end-to-end convolutional neural networks (CNN). It consists of a 1D CNN for extracting the energy on mel–frequency bands from the audio signal based on a simple filter bank, followed by a 2D CNN for the classification task. The main goal of this two-stage architecture is to bring more interpretability to the first layers of the network and to permit their reutilization in other problems of same the domain. We present a novel model to calculate the mel–spectrogam using a neural network that outperforms an existing work, both in its simplicity and its matching performance. Also,we implement a recently proposed approach to normalize the energy of the mel–spectrogram (per channel energy normalization, PCEN) as a layer of the neural network. We show how the parameters of this normalization can be learned by the network and why this is useful for SED on urban environments. We study how the training modifies the filter bank as well as the PCEN normalization parameters. The obtained system achieves classification results that are comparable to the state–of–the–art, while decreasing the number of parameters involved
dc.description.es.fl_txt_mv FRUCT Proceedings, vol. 24, no. 1.
dc.format.extent.es.fl_str_mv 7 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Zinemanas, P., Cancela, P. y Rocamora, M. End–to–end convolutional neural networks for sound event detection in urban environments [en línea]. EN: Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533-539.
dc.identifier.issn.none.fl_str_mv 2305-7254
dc.identifier.uri.none.fl_str_mv https://www.fruct.org/publications/volume-24/fruct24/
https://hdl.handle.net/20.500.12008/46271
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Open Innovations Association FRUCT
dc.relation.ispartof.es.fl_str_mv Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533--539.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Sound Event Detection (SED)
Convolutional Neural Networks (CNN)
Per Channel Energy Normalization (PCEN)
dc.title.none.fl_str_mv End–to–end convolutional neural networks for sound event detection in urban environments.
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description FRUCT Proceedings, vol. 24, no. 1.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_a969891dea160df2fc609db4caef16e3
identifier_str_mv Zinemanas, P., Cancela, P. y Rocamora, M. End–to–end convolutional neural networks for sound event detection in urban environments [en línea]. EN: Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533-539.
2305-7254
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/46271
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Zinemanas Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Cancela Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.2024-10-11T15:13:04Z2024-10-11T15:13:04Z2019Zinemanas, P., Cancela, P. y Rocamora, M. End–to–end convolutional neural networks for sound event detection in urban environments [en línea]. EN: Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533-539.2305-7254https://www.fruct.org/publications/volume-24/fruct24/https://hdl.handle.net/20.500.12008/46271FRUCT Proceedings, vol. 24, no. 1.We present a novel approach to tackle the problem of sound event detection (SED) in urban environments using end-to-end convolutional neural networks (CNN). It consists of a 1D CNN for extracting the energy on mel–frequency bands from the audio signal based on a simple filter bank, followed by a 2D CNN for the classification task. The main goal of this two-stage architecture is to bring more interpretability to the first layers of the network and to permit their reutilization in other problems of same the domain. We present a novel model to calculate the mel–spectrogam using a neural network that outperforms an existing work, both in its simplicity and its matching performance. Also,we implement a recently proposed approach to normalize the energy of the mel–spectrogram (per channel energy normalization, PCEN) as a layer of the neural network. We show how the parameters of this normalization can be learned by the network and why this is useful for SED on urban environments. We study how the training modifies the filter bank as well as the PCEN normalization parameters. The obtained system achieves classification results that are comparable to the state–of–the–art, while decreasing the number of parameters involvedSubmitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2024-10-09T22:13:46Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 13adb202270a5f7cee03e795b33133c4 (MD5) ZCR19.pdf: 541074 bytes, checksum: 9fae9fcfba1cddd92fef28915620b349 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-10-11T13:09:19Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 13adb202270a5f7cee03e795b33133c4 (MD5) ZCR19.pdf: 541074 bytes, checksum: 9fae9fcfba1cddd92fef28915620b349 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-10-11T15:13:04Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 13adb202270a5f7cee03e795b33133c4 (MD5) ZCR19.pdf: 541074 bytes, checksum: 9fae9fcfba1cddd92fef28915620b349 (MD5) Previous issue date: 20197 p.application/pdfenengOpen Innovations Association FRUCTProceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533--539.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Sound Event Detection (SED)Convolutional Neural Networks (CNN)Per Channel Energy Normalization (PCEN)End–to–end convolutional neural networks for sound event detection in urban environments.Ponenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaZinemanas, PabloCancela, PabloRocamora, MartínProcesamiento de SeñalesProcesamiento de Audio (GPA)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/46271/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/46271/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822527http://localhost:8080/xmlui/bitstream/20.500.12008/46271/3/license_textdf0749cf944f9d2754bc76e8ce56250cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/46271/4/license_rdf13adb202270a5f7cee03e795b33133c4MD54ORIGINALZCR19.pdfZCR19.pdfapplication/pdf541074http://localhost:8080/xmlui/bitstream/20.500.12008/46271/1/ZCR19.pdf9fae9fcfba1cddd92fef28915620b349MD5120.500.12008/462712024-10-11 12:13:04.584oai:colibri.udelar.edu.uy:20.500.12008/46271VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-10-11T15:13:04COLIBRI - Universidad de la Repúblicafalse
spellingShingle End–to–end convolutional neural networks for sound event detection in urban environments.
Zinemanas, Pablo
Sound Event Detection (SED)
Convolutional Neural Networks (CNN)
Per Channel Energy Normalization (PCEN)
status_str publishedVersion
title End–to–end convolutional neural networks for sound event detection in urban environments.
title_full End–to–end convolutional neural networks for sound event detection in urban environments.
title_fullStr End–to–end convolutional neural networks for sound event detection in urban environments.
title_full_unstemmed End–to–end convolutional neural networks for sound event detection in urban environments.
title_short End–to–end convolutional neural networks for sound event detection in urban environments.
title_sort End–to–end convolutional neural networks for sound event detection in urban environments.
topic Sound Event Detection (SED)
Convolutional Neural Networks (CNN)
Per Channel Energy Normalization (PCEN)
url https://www.fruct.org/publications/volume-24/fruct24/
https://hdl.handle.net/20.500.12008/46271