End–to–end convolutional neural networks for sound event detection in urban environments.
Resumen:
We present a novel approach to tackle the problem of sound event detection (SED) in urban environments using end-to-end convolutional neural networks (CNN). It consists of a 1D CNN for extracting the energy on mel–frequency bands from the audio signal based on a simple filter bank, followed by a 2D CNN for the classification task. The main goal of this two-stage architecture is to bring more interpretability to the first layers of the network and to permit their reutilization in other problems of same the domain. We present a novel model to calculate the mel–spectrogam using a neural network that outperforms an existing work, both in its simplicity and its matching performance. Also,we implement a recently proposed approach to normalize the energy of the mel–spectrogram (per channel energy normalization, PCEN) as a layer of the neural network. We show how the parameters of this normalization can be learned by the network and why this is useful for SED on urban environments. We study how the training modifies the filter bank as well as the PCEN normalization parameters. The obtained system achieves classification results that are comparable to the state–of–the–art, while decreasing the number of parameters involved
2019 | |
Sound Event Detection (SED) Convolutional Neural Networks (CNN) Per Channel Energy Normalization (PCEN) |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://www.fruct.org/publications/volume-24/fruct24/
https://hdl.handle.net/20.500.12008/46271 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1813049186754494464 |
---|---|
author | Zinemanas, Pablo |
author2 | Cancela, Pablo Rocamora, Martín |
author2_role | author author |
author_facet | Zinemanas, Pablo Cancela, Pablo Rocamora, Martín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 df0749cf944f9d2754bc76e8ce56250c 13adb202270a5f7cee03e795b33133c4 9fae9fcfba1cddd92fef28915620b349 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/46271/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/46271/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/46271/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/46271/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/46271/1/ZCR19.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Zinemanas Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. Cancela Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Zinemanas, Pablo Cancela, Pablo Rocamora, Martín |
dc.date.accessioned.none.fl_str_mv | 2024-10-11T15:13:04Z |
dc.date.available.none.fl_str_mv | 2024-10-11T15:13:04Z |
dc.date.issued.none.fl_str_mv | 2019 |
dc.description.abstract.none.fl_txt_mv | We present a novel approach to tackle the problem of sound event detection (SED) in urban environments using end-to-end convolutional neural networks (CNN). It consists of a 1D CNN for extracting the energy on mel–frequency bands from the audio signal based on a simple filter bank, followed by a 2D CNN for the classification task. The main goal of this two-stage architecture is to bring more interpretability to the first layers of the network and to permit their reutilization in other problems of same the domain. We present a novel model to calculate the mel–spectrogam using a neural network that outperforms an existing work, both in its simplicity and its matching performance. Also,we implement a recently proposed approach to normalize the energy of the mel–spectrogram (per channel energy normalization, PCEN) as a layer of the neural network. We show how the parameters of this normalization can be learned by the network and why this is useful for SED on urban environments. We study how the training modifies the filter bank as well as the PCEN normalization parameters. The obtained system achieves classification results that are comparable to the state–of–the–art, while decreasing the number of parameters involved |
dc.description.es.fl_txt_mv | FRUCT Proceedings, vol. 24, no. 1. |
dc.format.extent.es.fl_str_mv | 7 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Zinemanas, P., Cancela, P. y Rocamora, M. End–to–end convolutional neural networks for sound event detection in urban environments [en línea]. EN: Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533-539. |
dc.identifier.issn.none.fl_str_mv | 2305-7254 |
dc.identifier.uri.none.fl_str_mv | https://www.fruct.org/publications/volume-24/fruct24/ https://hdl.handle.net/20.500.12008/46271 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Open Innovations Association FRUCT |
dc.relation.ispartof.es.fl_str_mv | Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533--539. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Sound Event Detection (SED) Convolutional Neural Networks (CNN) Per Channel Energy Normalization (PCEN) |
dc.title.none.fl_str_mv | End–to–end convolutional neural networks for sound event detection in urban environments. |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | FRUCT Proceedings, vol. 24, no. 1. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_a969891dea160df2fc609db4caef16e3 |
identifier_str_mv | Zinemanas, P., Cancela, P. y Rocamora, M. End–to–end convolutional neural networks for sound event detection in urban environments [en línea]. EN: Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533-539. 2305-7254 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/46271 |
publishDate | 2019 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Zinemanas Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Cancela Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.2024-10-11T15:13:04Z2024-10-11T15:13:04Z2019Zinemanas, P., Cancela, P. y Rocamora, M. End–to–end convolutional neural networks for sound event detection in urban environments [en línea]. EN: Proceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533-539.2305-7254https://www.fruct.org/publications/volume-24/fruct24/https://hdl.handle.net/20.500.12008/46271FRUCT Proceedings, vol. 24, no. 1.We present a novel approach to tackle the problem of sound event detection (SED) in urban environments using end-to-end convolutional neural networks (CNN). It consists of a 1D CNN for extracting the energy on mel–frequency bands from the audio signal based on a simple filter bank, followed by a 2D CNN for the classification task. The main goal of this two-stage architecture is to bring more interpretability to the first layers of the network and to permit their reutilization in other problems of same the domain. We present a novel model to calculate the mel–spectrogam using a neural network that outperforms an existing work, both in its simplicity and its matching performance. Also,we implement a recently proposed approach to normalize the energy of the mel–spectrogram (per channel energy normalization, PCEN) as a layer of the neural network. We show how the parameters of this normalization can be learned by the network and why this is useful for SED on urban environments. We study how the training modifies the filter bank as well as the PCEN normalization parameters. The obtained system achieves classification results that are comparable to the state–of–the–art, while decreasing the number of parameters involvedSubmitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2024-10-09T22:13:46Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 13adb202270a5f7cee03e795b33133c4 (MD5) ZCR19.pdf: 541074 bytes, checksum: 9fae9fcfba1cddd92fef28915620b349 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-10-11T13:09:19Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 13adb202270a5f7cee03e795b33133c4 (MD5) ZCR19.pdf: 541074 bytes, checksum: 9fae9fcfba1cddd92fef28915620b349 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-10-11T15:13:04Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 13adb202270a5f7cee03e795b33133c4 (MD5) ZCR19.pdf: 541074 bytes, checksum: 9fae9fcfba1cddd92fef28915620b349 (MD5) Previous issue date: 20197 p.application/pdfenengOpen Innovations Association FRUCTProceedings of the 24th Conference of Open Innovations Association FRUCT, 2nd IEEE FRUCT International Workshop on Semantic Audio and the Internet of Things, Moscow, Russia, 8-12 apr. 2019, pp. 533--539.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Sound Event Detection (SED)Convolutional Neural Networks (CNN)Per Channel Energy Normalization (PCEN)End–to–end convolutional neural networks for sound event detection in urban environments.Ponenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaZinemanas, PabloCancela, PabloRocamora, MartínProcesamiento de SeñalesProcesamiento de Audio (GPA)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/46271/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/46271/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822527http://localhost:8080/xmlui/bitstream/20.500.12008/46271/3/license_textdf0749cf944f9d2754bc76e8ce56250cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/46271/4/license_rdf13adb202270a5f7cee03e795b33133c4MD54ORIGINALZCR19.pdfZCR19.pdfapplication/pdf541074http://localhost:8080/xmlui/bitstream/20.500.12008/46271/1/ZCR19.pdf9fae9fcfba1cddd92fef28915620b349MD5120.500.12008/462712024-10-11 12:13:04.584oai:colibri.udelar.edu.uy:20.500.12008/46271VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-10-11T15:13:04COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | End–to–end convolutional neural networks for sound event detection in urban environments. Zinemanas, Pablo Sound Event Detection (SED) Convolutional Neural Networks (CNN) Per Channel Energy Normalization (PCEN) |
status_str | publishedVersion |
title | End–to–end convolutional neural networks for sound event detection in urban environments. |
title_full | End–to–end convolutional neural networks for sound event detection in urban environments. |
title_fullStr | End–to–end convolutional neural networks for sound event detection in urban environments. |
title_full_unstemmed | End–to–end convolutional neural networks for sound event detection in urban environments. |
title_short | End–to–end convolutional neural networks for sound event detection in urban environments. |
title_sort | End–to–end convolutional neural networks for sound event detection in urban environments. |
topic | Sound Event Detection (SED) Convolutional Neural Networks (CNN) Per Channel Energy Normalization (PCEN) |
url | https://www.fruct.org/publications/volume-24/fruct24/ https://hdl.handle.net/20.500.12008/46271 |