Data quality maintenance in Data Integration Systems

Marotta, Adriana

Supervisor(es): Ruggia, Raúl

Resumen:

A Data Integration System (DIS) is an information system that integrates data from a set of heterogeneous and autonomous information sources and provides it to users. Quality in these systems consists of various factors that are measured in data. Some of the usually considered ones are completeness, accuracy, accessibility, freshness, availability. In a DIS, quality factors are associated to the sources, to the extracted and transformed information, and to the information provided by the DIS to the user. At the same time, the user has the possibility of posing quality requirements associated to his data requirements. DIS Quality is considered as better, the nearer it is to the user quality requirements. DIS quality depends on data sources quality, on data transformations and on quality required by users. Therefore, DIS quality is a property that varies in function of the variations of these three other properties. The general goal of this thesis is to provide mechanisms for maintaining DIS quality at a level that satisfies the user quality requirements, minimizing the modifications to the system that are generated by quality changes. The proposal of this thesis allows constructing and maintaining a DIS that is tolerant to quality changes. This means that the DIS is constructed taking into account previsions of quality behavior, such that if changes occur according to these previsions the system is not affected at all by them. These previsions are provided by models of quality behavior of DIS data, which must be maintained up to date. With this strategy, the DIS is affected only when quality behavior models change, instead of being affected each time there is a quality variation in the system. The thesis has a probabilistic approach, which allows modeling the behavior of the quality factors at the sources and at the DIS, allows the users to state flexible quality requirements (using probabilities), and provides tools, such as certainty, mathematical expectation, etc., that help to decide which quality changes are relevant to the DIS quality. The probabilistic models are monitored in order to detect source quality changes, strategy that allows detecting changes on quality behavior and not only punctual quality changes. We propose to monitor also other DIS properties that affect its quality, and for each of these changes decide if they affect the behavior of DIS quality, taking into account DIS quality models. Finally, the probabilistic approach is also applied at the moment of determining actions to take in order to improve DIS quality. For the interpretation of DIS situation we propose to use statistics, which include, in particular, the history of the quality models.


Detalles Bibliográficos
2008
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/34296
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523183250636800
author Marotta, Adriana
author_facet Marotta, Adriana
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
c579c2e2614081fece912c4768ba6e4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/34296/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/34296/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/34296/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/34296/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/34296/1/Mar08.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Marotta Adriana, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Ruggia, Raúl
dc.creator.none.fl_str_mv Marotta, Adriana
dc.date.accessioned.none.fl_str_mv 2022-10-24T16:02:59Z
dc.date.available.none.fl_str_mv 2022-10-24T16:02:59Z
dc.date.issued.none.fl_str_mv 2008
dc.description.abstract.none.fl_txt_mv A Data Integration System (DIS) is an information system that integrates data from a set of heterogeneous and autonomous information sources and provides it to users. Quality in these systems consists of various factors that are measured in data. Some of the usually considered ones are completeness, accuracy, accessibility, freshness, availability. In a DIS, quality factors are associated to the sources, to the extracted and transformed information, and to the information provided by the DIS to the user. At the same time, the user has the possibility of posing quality requirements associated to his data requirements. DIS Quality is considered as better, the nearer it is to the user quality requirements. DIS quality depends on data sources quality, on data transformations and on quality required by users. Therefore, DIS quality is a property that varies in function of the variations of these three other properties. The general goal of this thesis is to provide mechanisms for maintaining DIS quality at a level that satisfies the user quality requirements, minimizing the modifications to the system that are generated by quality changes. The proposal of this thesis allows constructing and maintaining a DIS that is tolerant to quality changes. This means that the DIS is constructed taking into account previsions of quality behavior, such that if changes occur according to these previsions the system is not affected at all by them. These previsions are provided by models of quality behavior of DIS data, which must be maintained up to date. With this strategy, the DIS is affected only when quality behavior models change, instead of being affected each time there is a quality variation in the system. The thesis has a probabilistic approach, which allows modeling the behavior of the quality factors at the sources and at the DIS, allows the users to state flexible quality requirements (using probabilities), and provides tools, such as certainty, mathematical expectation, etc., that help to decide which quality changes are relevant to the DIS quality. The probabilistic models are monitored in order to detect source quality changes, strategy that allows detecting changes on quality behavior and not only punctual quality changes. We propose to monitor also other DIS properties that affect its quality, and for each of these changes decide if they affect the behavior of DIS quality, taking into account DIS quality models. Finally, the probabilistic approach is also applied at the moment of determining actions to take in order to improve DIS quality. For the interpretation of DIS situation we propose to use statistics, which include, in particular, the history of the quality models.
dc.format.extent.es.fl_str_mv 197 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Marotta, A. Data quality maintenance in Data Integration Systems [en línea] Tesis de doctorado. Montevideo : Udelar. FI. INCO : PEDECIBA, 2008.
dc.identifier.issn.none.fl_str_mv 1688-2776
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/34296
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar. FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.title.none.fl_str_mv Data quality maintenance in Data Integration Systems
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description A Data Integration System (DIS) is an information system that integrates data from a set of heterogeneous and autonomous information sources and provides it to users. Quality in these systems consists of various factors that are measured in data. Some of the usually considered ones are completeness, accuracy, accessibility, freshness, availability. In a DIS, quality factors are associated to the sources, to the extracted and transformed information, and to the information provided by the DIS to the user. At the same time, the user has the possibility of posing quality requirements associated to his data requirements. DIS Quality is considered as better, the nearer it is to the user quality requirements. DIS quality depends on data sources quality, on data transformations and on quality required by users. Therefore, DIS quality is a property that varies in function of the variations of these three other properties. The general goal of this thesis is to provide mechanisms for maintaining DIS quality at a level that satisfies the user quality requirements, minimizing the modifications to the system that are generated by quality changes. The proposal of this thesis allows constructing and maintaining a DIS that is tolerant to quality changes. This means that the DIS is constructed taking into account previsions of quality behavior, such that if changes occur according to these previsions the system is not affected at all by them. These previsions are provided by models of quality behavior of DIS data, which must be maintained up to date. With this strategy, the DIS is affected only when quality behavior models change, instead of being affected each time there is a quality variation in the system. The thesis has a probabilistic approach, which allows modeling the behavior of the quality factors at the sources and at the DIS, allows the users to state flexible quality requirements (using probabilities), and provides tools, such as certainty, mathematical expectation, etc., that help to decide which quality changes are relevant to the DIS quality. The probabilistic models are monitored in order to detect source quality changes, strategy that allows detecting changes on quality behavior and not only punctual quality changes. We propose to monitor also other DIS properties that affect its quality, and for each of these changes decide if they affect the behavior of DIS quality, taking into account DIS quality models. Finally, the probabilistic approach is also applied at the moment of determining actions to take in order to improve DIS quality. For the interpretation of DIS situation we propose to use statistics, which include, in particular, the history of the quality models.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_a892d194b0a6b70af34717fabc23bde9
identifier_str_mv Marotta, A. Data quality maintenance in Data Integration Systems [en línea] Tesis de doctorado. Montevideo : Udelar. FI. INCO : PEDECIBA, 2008.
1688-2776
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/34296
publishDate 2008
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Marotta Adriana, Universidad de la República (Uruguay). Facultad de Ingeniería2022-10-24T16:02:59Z2022-10-24T16:02:59Z2008Marotta, A. Data quality maintenance in Data Integration Systems [en línea] Tesis de doctorado. Montevideo : Udelar. FI. INCO : PEDECIBA, 2008.1688-2776https://hdl.handle.net/20.500.12008/34296A Data Integration System (DIS) is an information system that integrates data from a set of heterogeneous and autonomous information sources and provides it to users. Quality in these systems consists of various factors that are measured in data. Some of the usually considered ones are completeness, accuracy, accessibility, freshness, availability. In a DIS, quality factors are associated to the sources, to the extracted and transformed information, and to the information provided by the DIS to the user. At the same time, the user has the possibility of posing quality requirements associated to his data requirements. DIS Quality is considered as better, the nearer it is to the user quality requirements. DIS quality depends on data sources quality, on data transformations and on quality required by users. Therefore, DIS quality is a property that varies in function of the variations of these three other properties. The general goal of this thesis is to provide mechanisms for maintaining DIS quality at a level that satisfies the user quality requirements, minimizing the modifications to the system that are generated by quality changes. The proposal of this thesis allows constructing and maintaining a DIS that is tolerant to quality changes. This means that the DIS is constructed taking into account previsions of quality behavior, such that if changes occur according to these previsions the system is not affected at all by them. These previsions are provided by models of quality behavior of DIS data, which must be maintained up to date. With this strategy, the DIS is affected only when quality behavior models change, instead of being affected each time there is a quality variation in the system. The thesis has a probabilistic approach, which allows modeling the behavior of the quality factors at the sources and at the DIS, allows the users to state flexible quality requirements (using probabilities), and provides tools, such as certainty, mathematical expectation, etc., that help to decide which quality changes are relevant to the DIS quality. The probabilistic models are monitored in order to detect source quality changes, strategy that allows detecting changes on quality behavior and not only punctual quality changes. We propose to monitor also other DIS properties that affect its quality, and for each of these changes decide if they affect the behavior of DIS quality, taking into account DIS quality models. Finally, the probabilistic approach is also applied at the moment of determining actions to take in order to improve DIS quality. For the interpretation of DIS situation we propose to use statistics, which include, in particular, the history of the quality models.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-10-24T14:30:51Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Mar08.pdf: 2162275 bytes, checksum: c579c2e2614081fece912c4768ba6e4a (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-10-24T16:01:19Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Mar08.pdf: 2162275 bytes, checksum: c579c2e2614081fece912c4768ba6e4a (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-10-24T16:02:59Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Mar08.pdf: 2162275 bytes, checksum: c579c2e2614081fece912c4768ba6e4a (MD5) Previous issue date: 2008197 p.application/pdfenengUdelar. FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Data quality maintenance in Data Integration SystemsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMarotta, AdrianaRuggia, RaúlUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34296/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/34296/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/34296/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/34296/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALMar08.pdfMar08.pdfapplication/pdf2162275http://localhost:8080/xmlui/bitstream/20.500.12008/34296/1/Mar08.pdfc579c2e2614081fece912c4768ba6e4aMD5120.500.12008/342962022-10-24 13:02:59.322oai:colibri.udelar.edu.uy:20.500.12008/34296VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:28.810761COLIBRI - Universidad de la Repúblicafalse
spellingShingle Data quality maintenance in Data Integration Systems
Marotta, Adriana
status_str acceptedVersion
title Data quality maintenance in Data Integration Systems
title_full Data quality maintenance in Data Integration Systems
title_fullStr Data quality maintenance in Data Integration Systems
title_full_unstemmed Data quality maintenance in Data Integration Systems
title_short Data quality maintenance in Data Integration Systems
title_sort Data quality maintenance in Data Integration Systems
url https://hdl.handle.net/20.500.12008/34296