Urban mobility data analysis in Montevideo, Uruguay
Supervisor(es): Nesmachnow, Sergio
Resumen:
Transportation systems play a major role in modern urban contexts, where citizens are expected to travel in order to engage in social and economic activities. Understanding the interaction between citizens and transportation systems is crucial for policy-makers that aim to improve mobility in a city. Within the novel paradigm of smart cities, modern urban transportation systems incorporate technologies that generate huge volumes of data in real time, which can be processed to extract valuable information about the mobility of citizens. This thesis studies the public transportation system of Montevideo, Uruguay, following an urban data analysis approach. A thorough analysis of the transportation system and its usage is outlined, which combines several sources of urban data. The analyzed data includes the location of each bus of the transportation system as well as every ticket sold using smart cards during 2015, accounting for over 150 GB of raw data. Furthermore, origin-destination matrices, which describe mobility patterns in the city, are generated by processing geolocalized bus ticket sales data. For this purpose, a destination estimation algorithm is implemented following methodologies from the related literature. The computed results are compared to the ndings of a recent mobility survey, where the proposed approach arises as a viable alternative to obtain up-to-date mobility information. Finally, a visualization web application is presented, which allows conveying the aggregated information in an intuitive way to stakeholders.
2018 | |
Urban mobility Smart cities Intelligent transportation systems Urban data analysis Origin-destination matrix |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21771 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND) |
Sumario: | Transportation systems play a major role in modern urban contexts, where citizens are expected to travel in order to engage in social and economic activities. Understanding the interaction between citizens and transportation systems is crucial for policy-makers that aim to improve mobility in a city. Within the novel paradigm of smart cities, modern urban transportation systems incorporate technologies that generate huge volumes of data in real time, which can be processed to extract valuable information about the mobility of citizens. This thesis studies the public transportation system of Montevideo, Uruguay, following an urban data analysis approach. A thorough analysis of the transportation system and its usage is outlined, which combines several sources of urban data. The analyzed data includes the location of each bus of the transportation system as well as every ticket sold using smart cards during 2015, accounting for over 150 GB of raw data. Furthermore, origin-destination matrices, which describe mobility patterns in the city, are generated by processing geolocalized bus ticket sales data. For this purpose, a destination estimation algorithm is implemented following methodologies from the related literature. The computed results are compared to the ndings of a recent mobility survey, where the proposed approach arises as a viable alternative to obtain up-to-date mobility information. Finally, a visualization web application is presented, which allows conveying the aggregated information in an intuitive way to stakeholders. |
---|