Decomposable partial actions

Abadie, Fernando - Gardella, Eusebio - Geffen, Shirly

Resumen:

We define the decomposition property for partial actions of discrete groups on C∗-algebras. Decomposable partial systems appear naturally in practice, and many commonly occurring partial actions can be decomposed into partial actions with the decomposition property. For instance, any partial action of a finite group is an iterated extension of decomposable systems. Partial actions with the decomposition property are always globalizable and amenable, regardless of the acting group, and their globalization can be explicitly described in terms of certain global sub-systems. A direct computation of their crossed products is also carried out. We show that partial actions with the decomposition property behave in many ways like global actions of finite groups (even when the acting group is infinite), which makes their study particularly accessible. For example, there exists a canonical faithful conditional expectation onto the fixed point algebra, which is moreover a corner in the crossed product in a natural way. (Both of these facts are in general false for partial actions of finite groups.) As an application, we show that freeness of a topological partial action with the decomposition property is equivalent to its fixed point algebra being Morita equivalent to its crossed product. We also show by example that this fails for general partial actions of finite groups.


Detalles Bibliográficos
2021
C∗-algebras
decomposition property
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/42196
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
_version_ 1807522805424586752
author Abadie, Fernando
author2 Gardella, Eusebio
Geffen, Shirly
author2_role author
author
author_facet Abadie, Fernando
Gardella, Eusebio
Geffen, Shirly
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a9ac1bac94fe38dbe560422d834a993f
99d4d0abea9487290bfcdd1f6a13ed16
27d85011139cdc22b845da52c980f01f
e2d591bffd1654f91049c5136756d4a3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/42196/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/42196/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/42196/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/42196/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/42196/1/101016jjfa2021109112.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Abadie Fernando, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
Gardella Eusebio
Geffen Shirly
dc.creator.none.fl_str_mv Abadie, Fernando
Gardella, Eusebio
Geffen, Shirly
dc.date.accessioned.none.fl_str_mv 2024-01-12T15:31:45Z
dc.date.available.none.fl_str_mv 2024-01-12T15:31:45Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv We define the decomposition property for partial actions of discrete groups on C∗-algebras. Decomposable partial systems appear naturally in practice, and many commonly occurring partial actions can be decomposed into partial actions with the decomposition property. For instance, any partial action of a finite group is an iterated extension of decomposable systems. Partial actions with the decomposition property are always globalizable and amenable, regardless of the acting group, and their globalization can be explicitly described in terms of certain global sub-systems. A direct computation of their crossed products is also carried out. We show that partial actions with the decomposition property behave in many ways like global actions of finite groups (even when the acting group is infinite), which makes their study particularly accessible. For example, there exists a canonical faithful conditional expectation onto the fixed point algebra, which is moreover a corner in the crossed product in a natural way. (Both of these facts are in general false for partial actions of finite groups.) As an application, we show that freeness of a topological partial action with the decomposition property is equivalent to its fixed point algebra being Morita equivalent to its crossed product. We also show by example that this fails for general partial actions of finite groups.
dc.description.es.fl_txt_mv Publicado también en Journal of Functional Analysis, 2021, 281(7) DOI: 10.1016/j.jfa.2021.109112
dc.format.extent.es.fl_str_mv 26 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Abadie, F, Gardella, E y Geffen, S. "Decomposable partial actions" [Preprint] Publicado en: Mathematics (Operator Algebras). 2021, arXiv:2003.14051. pp 1-26. DOI: 10.1016/j.jfa.2021.109112.
dc.identifier.doi.none.fl_str_mv 10.1016/j.jfa.2021.109112
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/42196
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv arXiv
dc.relation.ispartof.es.fl_str_mv Mathematics (Operator Algebras). arXiv:2003.14051. pp 1-26
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv C∗-algebras
decomposition property
dc.title.none.fl_str_mv Decomposable partial actions
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Publicado también en Journal of Functional Analysis, 2021, 281(7) DOI: 10.1016/j.jfa.2021.109112
eu_rights_str_mv openAccess
format preprint
id COLIBRI_a1a8736c0441dc375dc68b879102ca2e
identifier_str_mv Abadie, F, Gardella, E y Geffen, S. "Decomposable partial actions" [Preprint] Publicado en: Mathematics (Operator Algebras). 2021, arXiv:2003.14051. pp 1-26. DOI: 10.1016/j.jfa.2021.109112.
10.1016/j.jfa.2021.109112
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/42196
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
spelling Abadie Fernando, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Gardella EusebioGeffen Shirly2024-01-12T15:31:45Z2024-01-12T15:31:45Z2021Abadie, F, Gardella, E y Geffen, S. "Decomposable partial actions" [Preprint] Publicado en: Mathematics (Operator Algebras). 2021, arXiv:2003.14051. pp 1-26. DOI: 10.1016/j.jfa.2021.109112.https://hdl.handle.net/20.500.12008/4219610.1016/j.jfa.2021.109112Publicado también en Journal of Functional Analysis, 2021, 281(7) DOI: 10.1016/j.jfa.2021.109112We define the decomposition property for partial actions of discrete groups on C∗-algebras. Decomposable partial systems appear naturally in practice, and many commonly occurring partial actions can be decomposed into partial actions with the decomposition property. For instance, any partial action of a finite group is an iterated extension of decomposable systems. Partial actions with the decomposition property are always globalizable and amenable, regardless of the acting group, and their globalization can be explicitly described in terms of certain global sub-systems. A direct computation of their crossed products is also carried out. We show that partial actions with the decomposition property behave in many ways like global actions of finite groups (even when the acting group is infinite), which makes their study particularly accessible. For example, there exists a canonical faithful conditional expectation onto the fixed point algebra, which is moreover a corner in the crossed product in a natural way. (Both of these facts are in general false for partial actions of finite groups.) As an application, we show that freeness of a topological partial action with the decomposition property is equivalent to its fixed point algebra being Morita equivalent to its crossed product. We also show by example that this fails for general partial actions of finite groups.Submitted by Parodi Mónica (mparodi@fcien.edu.uy) on 2024-01-10T15:26:50Z No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101016jjfa2021109112.pdf: 369399 bytes, checksum: e2d591bffd1654f91049c5136756d4a3 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-01-12T14:41:37Z (GMT) No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101016jjfa2021109112.pdf: 369399 bytes, checksum: e2d591bffd1654f91049c5136756d4a3 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-01-12T15:31:45Z (GMT). No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101016jjfa2021109112.pdf: 369399 bytes, checksum: e2d591bffd1654f91049c5136756d4a3 (MD5) Previous issue date: 202126 h.application/pdfenengarXivMathematics (Operator Algebras). arXiv:2003.14051. pp 1-26Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)C∗-algebrasdecomposition propertyDecomposable partial actionsPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAbadie, FernandoGardella, EusebioGeffen, ShirlyLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42196/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/42196/2/license_urla9ac1bac94fe38dbe560422d834a993fMD52license_textlicense_texttext/html; charset=utf-822891http://localhost:8080/xmlui/bitstream/20.500.12008/42196/3/license_text99d4d0abea9487290bfcdd1f6a13ed16MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-826308http://localhost:8080/xmlui/bitstream/20.500.12008/42196/4/license_rdf27d85011139cdc22b845da52c980f01fMD54ORIGINAL101016jjfa2021109112.pdf101016jjfa2021109112.pdfapplication/pdf369399http://localhost:8080/xmlui/bitstream/20.500.12008/42196/1/101016jjfa2021109112.pdfe2d591bffd1654f91049c5136756d4a3MD5120.500.12008/421962024-01-12 12:31:45.562oai:colibri.udelar.edu.uy:20.500.12008/42196VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:17.780419COLIBRI - Universidad de la Repúblicafalse
spellingShingle Decomposable partial actions
Abadie, Fernando
C∗-algebras
decomposition property
status_str submittedVersion
title Decomposable partial actions
title_full Decomposable partial actions
title_fullStr Decomposable partial actions
title_full_unstemmed Decomposable partial actions
title_short Decomposable partial actions
title_sort Decomposable partial actions
topic C∗-algebras
decomposition property
url https://hdl.handle.net/20.500.12008/42196