Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
Supervisor(es): Marzoa Tanco, Mercedes - González Olmedo, Mario
Resumen:
Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio.
2021 | |
Aprendizaje activo Transferencia de aprendizaje Aprendizaje profundo Conjunto de datos |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/30313 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523227103133696 |
---|---|
author | Cabrera García, Juan Ignacio |
author_facet | Cabrera García, Juan Ignacio |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 5b05c8c018e7a5159cbc87e28173d593 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/30313/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/30313/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/30313/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/30313/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/30313/1/CAB21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Cabrera García Juan Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Marzoa Tanco, Mercedes González Olmedo, Mario |
dc.creator.none.fl_str_mv | Cabrera García, Juan Ignacio |
dc.date.accessioned.none.fl_str_mv | 2021-12-07T13:27:00Z |
dc.date.available.none.fl_str_mv | 2021-12-07T13:27:00Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio. |
dc.format.extent.es.fl_str_mv | 58 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Cabrera García, J. Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/30313 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar.FI |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Aprendizaje activo Transferencia de aprendizaje Aprendizaje profundo Conjunto de datos |
dc.title.none.fl_str_mv | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_a1790b441a053d39872201cbb70354bf |
identifier_str_mv | Cabrera García, J. Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/30313 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Cabrera García Juan Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería2021-12-07T13:27:00Z2021-12-07T13:27:00Z2021Cabrera García, J. Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.https://hdl.handle.net/20.500.12008/30313Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2021-12-06T13:16:50Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CAB21.pdf: 3116245 bytes, checksum: 5b05c8c018e7a5159cbc87e28173d593 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-12-06T18:34:23Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CAB21.pdf: 3116245 bytes, checksum: 5b05c8c018e7a5159cbc87e28173d593 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-12-07T13:27:00Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CAB21.pdf: 3116245 bytes, checksum: 5b05c8c018e7a5159cbc87e28173d593 (MD5) Previous issue date: 202158 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje activoTransferencia de aprendizajeAprendizaje profundoConjunto de datosAprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamientoTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCabrera García, Juan IgnacioMarzoa Tanco, MercedesGonzález Olmedo, MarioUniversidad de la República (Uruguay). Facultad de IngenieríaLicenciado en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/30313/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/30313/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/30313/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/30313/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCAB21.pdfCAB21.pdfapplication/pdf3116245http://localhost:8080/xmlui/bitstream/20.500.12008/30313/1/CAB21.pdf5b05c8c018e7a5159cbc87e28173d593MD5120.500.12008/303132024-04-12 14:06:40.189oai:colibri.udelar.edu.uy:20.500.12008/30313VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:23.682399COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento Cabrera García, Juan Ignacio Aprendizaje activo Transferencia de aprendizaje Aprendizaje profundo Conjunto de datos |
status_str | acceptedVersion |
title | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento |
title_full | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento |
title_fullStr | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento |
title_full_unstemmed | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento |
title_short | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento |
title_sort | Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento |
topic | Aprendizaje activo Transferencia de aprendizaje Aprendizaje profundo Conjunto de datos |
url | https://hdl.handle.net/20.500.12008/30313 |