Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento

Cabrera García, Juan Ignacio

Supervisor(es): Marzoa Tanco, Mercedes - González Olmedo, Mario

Resumen:

Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio.


Detalles Bibliográficos
2021
Aprendizaje activo
Transferencia de aprendizaje
Aprendizaje profundo
Conjunto de datos
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/30313
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523227103133696
author Cabrera García, Juan Ignacio
author_facet Cabrera García, Juan Ignacio
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
5b05c8c018e7a5159cbc87e28173d593
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/30313/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/30313/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/30313/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/30313/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/30313/1/CAB21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Cabrera García Juan Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Marzoa Tanco, Mercedes
González Olmedo, Mario
dc.creator.none.fl_str_mv Cabrera García, Juan Ignacio
dc.date.accessioned.none.fl_str_mv 2021-12-07T13:27:00Z
dc.date.available.none.fl_str_mv 2021-12-07T13:27:00Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio.
dc.format.extent.es.fl_str_mv 58 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Cabrera García, J. Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/30313
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Aprendizaje activo
Transferencia de aprendizaje
Aprendizaje profundo
Conjunto de datos
dc.title.none.fl_str_mv Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_a1790b441a053d39872201cbb70354bf
identifier_str_mv Cabrera García, J. Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/30313
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Cabrera García Juan Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería2021-12-07T13:27:00Z2021-12-07T13:27:00Z2021Cabrera García, J. Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.https://hdl.handle.net/20.500.12008/30313Los proyectos de aprendizaje profundo se enfrentan a múltiples desafíos, entre ellos el gran coste de generar conjuntos de datos etiquetados a gran escala, su depuración y el impacto en el resultado obtenido. La elección de qué datos utilizar, cuáles etiquetar y cómo afectan a estos modelos tienen un alto impacto en la viabilidad económica y computacional de los proyectos. Por lo tanto, es crucial elegir qué herramientas y técnicas utilizar durante el proceso de creación de estos conjuntos de datos en varios dominios, entre ellos la visión artificial. En este proyecto se propone analizar el estado del arte de las herramientas, técnicas y modelos que permiten optimizar el conjunto de imágenes sobre el cual se entrena un modelo de aprendizaje profundo para la visión artificial. Además, se diseña una solución para la selección de imágenes relevantes a etiquetar (a partir de un banco de imágenes sin etiquetas) para entrenar los modelos y se implementa una prueba de concepto de esta solución sobre un caso de uso real que supera significativamente el etiquetado aleatorio.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2021-12-06T13:16:50Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CAB21.pdf: 3116245 bytes, checksum: 5b05c8c018e7a5159cbc87e28173d593 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-12-06T18:34:23Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CAB21.pdf: 3116245 bytes, checksum: 5b05c8c018e7a5159cbc87e28173d593 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-12-07T13:27:00Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CAB21.pdf: 3116245 bytes, checksum: 5b05c8c018e7a5159cbc87e28173d593 (MD5) Previous issue date: 202158 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje activoTransferencia de aprendizajeAprendizaje profundoConjunto de datosAprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamientoTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCabrera García, Juan IgnacioMarzoa Tanco, MercedesGonzález Olmedo, MarioUniversidad de la República (Uruguay). Facultad de IngenieríaLicenciado en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/30313/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/30313/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/30313/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/30313/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCAB21.pdfCAB21.pdfapplication/pdf3116245http://localhost:8080/xmlui/bitstream/20.500.12008/30313/1/CAB21.pdf5b05c8c018e7a5159cbc87e28173d593MD5120.500.12008/303132024-04-12 14:06:40.189oai:colibri.udelar.edu.uy:20.500.12008/30313VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:23.682399COLIBRI - Universidad de la Repúblicafalse
spellingShingle Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
Cabrera García, Juan Ignacio
Aprendizaje activo
Transferencia de aprendizaje
Aprendizaje profundo
Conjunto de datos
status_str acceptedVersion
title Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
title_full Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
title_fullStr Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
title_full_unstemmed Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
title_short Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
title_sort Aprendizaje Profundo para el procesamiento de Imágenes - Optimización del conjunto de datos de entrenamiento
topic Aprendizaje activo
Transferencia de aprendizaje
Aprendizaje profundo
Conjunto de datos
url https://hdl.handle.net/20.500.12008/30313