Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination

Elenter, Juan - Etchebarne, Guillermo - Hounie, Ignacio - Fariello, María Inés - Lecumberry, Federico

Resumen:

A plethora of machine learning and statistical methods have been applied in the context of genome enabled prediction. Here we address the prediction of complex traits from SNP marker data in agriculture. The datasets used present different levels of trait complexity. These are: Yeast yield, Holstein cattle milk yield, German bulls Sire Conception Rate, and Wheat yield. Population structure, number of samples and SNPs also vary among datasets. We benchmark several popular models including bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in all datasets.Furthermore, we compare two genome codifications: One hot encoding and Additive encoding, the latter being the standard codification used in quantitative genetics. We show that, in these datasets, additive encoding outperforms categorical encodings despite the fact that the variables are categorical in nature. This difference in performance may be caused by the predominance of additive effects, the dimensionality increase and the loss of the one-to -one correspondence between variables and biological markers. Regarding robustness to random marker elimination, we found that on all datasets most models present a negligible loss in predictive power even when trained on a small, random sample of markers. We argue that sample size limits the amount of SNPs which are informative with respect to the downstream prediction task.


Detalles Bibliográficos
2021
Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.
Genomic prediction
Machine learning
Dimensionality reduction
Inglés
Universidad de la República
COLIBRI
https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36814
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522932675575808
author Elenter, Juan
author2 Etchebarne, Guillermo
Hounie, Ignacio
Fariello, María Inés
Lecumberry, Federico
author2_role author
author
author
author
author_facet Elenter, Juan
Etchebarne, Guillermo
Hounie, Ignacio
Fariello, María Inés
Lecumberry, Federico
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
5adca3940792d19f941711d6ce679a9e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36814/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36814/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36814/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36814/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36814/1/EEHFL21a.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.
Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.
Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Elenter, Juan
Etchebarne, Guillermo
Hounie, Ignacio
Fariello, María Inés
Lecumberry, Federico
dc.date.accessioned.none.fl_str_mv 2023-04-26T11:47:08Z
dc.date.available.none.fl_str_mv 2023-04-26T11:47:08Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv A plethora of machine learning and statistical methods have been applied in the context of genome enabled prediction. Here we address the prediction of complex traits from SNP marker data in agriculture. The datasets used present different levels of trait complexity. These are: Yeast yield, Holstein cattle milk yield, German bulls Sire Conception Rate, and Wheat yield. Population structure, number of samples and SNPs also vary among datasets. We benchmark several popular models including bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in all datasets.Furthermore, we compare two genome codifications: One hot encoding and Additive encoding, the latter being the standard codification used in quantitative genetics. We show that, in these datasets, additive encoding outperforms categorical encodings despite the fact that the variables are categorical in nature. This difference in performance may be caused by the predominance of additive effects, the dimensionality increase and the loss of the one-to -one correspondence between variables and biological markers. Regarding robustness to random marker elimination, we found that on all datasets most models present a negligible loss in predictive power even when trained on a small, random sample of markers. We argue that sample size limits the amount of SNPs which are informative with respect to the downstream prediction task.
dc.description.es.fl_txt_mv Los experimentos presentados en este trabajo se realizaron utilizando ClusterUy (sitio: https://cluster.uy).
dc.description.sponsorship.none.fl_txt_mv Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.
dc.format.extent.es.fl_str_mv 1 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Elenter, J., Etchebarne, G., Hounie, I. y otros. Machine Learning methods for genome enabled prediction of complex traits [en línea]. Póster, 2021.
dc.identifier.uri.none.fl_str_mv https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36814
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Cold Spring Harbor Laboratory (CSHL)
dc.relation.ispartof.es.fl_str_mv Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr. 2021, Cold Spring Harbor, NY, USA.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Genomic prediction
Machine learning
Dimensionality reduction
dc.title.none.fl_str_mv Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
dc.type.es.fl_str_mv Póster
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Los experimentos presentados en este trabajo se realizaron utilizando ClusterUy (sitio: https://cluster.uy).
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_a0f53e74c4a7cc593aaccffca32fc45d
identifier_str_mv Elenter, J., Etchebarne, G., Hounie, I. y otros. Machine Learning methods for genome enabled prediction of complex traits [en línea]. Póster, 2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36814
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-04-26T11:47:08Z2023-04-26T11:47:08Z2021Elenter, J., Etchebarne, G., Hounie, I. y otros. Machine Learning methods for genome enabled prediction of complex traits [en línea]. Póster, 2021.https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21https://hdl.handle.net/20.500.12008/36814Los experimentos presentados en este trabajo se realizaron utilizando ClusterUy (sitio: https://cluster.uy).A plethora of machine learning and statistical methods have been applied in the context of genome enabled prediction. Here we address the prediction of complex traits from SNP marker data in agriculture. The datasets used present different levels of trait complexity. These are: Yeast yield, Holstein cattle milk yield, German bulls Sire Conception Rate, and Wheat yield. Population structure, number of samples and SNPs also vary among datasets. We benchmark several popular models including bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in all datasets.Furthermore, we compare two genome codifications: One hot encoding and Additive encoding, the latter being the standard codification used in quantitative genetics. We show that, in these datasets, additive encoding outperforms categorical encodings despite the fact that the variables are categorical in nature. This difference in performance may be caused by the predominance of additive effects, the dimensionality increase and the loss of the one-to -one correspondence between variables and biological markers. Regarding robustness to random marker elimination, we found that on all datasets most models present a negligible loss in predictive power even when trained on a small, random sample of markers. We argue that sample size limits the amount of SNPs which are informative with respect to the downstream prediction task.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-24T01:53:37Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEHFL21a.pdf: 960648 bytes, checksum: 5adca3940792d19f941711d6ce679a9e (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-24T18:14:36Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEHFL21a.pdf: 960648 bytes, checksum: 5adca3940792d19f941711d6ce679a9e (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-26T11:47:08Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEHFL21a.pdf: 960648 bytes, checksum: 5adca3940792d19f941711d6ce679a9e (MD5) Previous issue date: 2021Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.1 p.application/pdfenengCold Spring Harbor Laboratory (CSHL)Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr. 2021, Cold Spring Harbor, NY, USA.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Genomic predictionMachine learningDimensionality reductionMachine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker eliminationPósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaElenter, JuanEtchebarne, GuillermoHounie, IgnacioFariello, María InésLecumberry, FedericoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36814/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36814/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36814/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36814/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALEEHFL21a.pdfEEHFL21a.pdfapplication/pdf960648http://localhost:8080/xmlui/bitstream/20.500.12008/36814/1/EEHFL21a.pdf5adca3940792d19f941711d6ce679a9eMD5120.500.12008/368142023-04-26 08:47:08.565oai:colibri.udelar.edu.uy:20.500.12008/36814VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:20.236566COLIBRI - Universidad de la Repúblicafalse
spellingShingle Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
Elenter, Juan
Genomic prediction
Machine learning
Dimensionality reduction
status_str publishedVersion
title Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
title_full Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
title_fullStr Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
title_full_unstemmed Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
title_short Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
title_sort Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
topic Genomic prediction
Machine learning
Dimensionality reduction
url https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36814