Internal program extraction in the calculus of inductive constructions

Severi, Paula - Szasz, Nora

Resumen:

Based on the Calculus of Constructions extended with inductive definitions we present a Theory of Specifications with rules for simultaneously constructing programs and their correctness proofs. The theory contains types for representing specifications, whose corresponding notion of implementation is that of a pair formed by a program and a correctness proof. The rules of the theory are sych that in implementations the program parts appear mixed together with the proof parts. A reduction relation performs the task of separating programs from proofs. Consequently, every implementation computes to a pair composed of a program and a proof of its correctness, and so the program extraction procedure is immediate.


Detalles Bibliográficos
2002
CALCULUS OF CONSTRUCTIONS
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/3487
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
Resumen:
Sumario:Based on the Calculus of Constructions extended with inductive definitions we present a Theory of Specifications with rules for simultaneously constructing programs and their correctness proofs. The theory contains types for representing specifications, whose corresponding notion of implementation is that of a pair formed by a program and a correctness proof. The rules of the theory are sych that in implementations the program parts appear mixed together with the proof parts. A reduction relation performs the task of separating programs from proofs. Consequently, every implementation computes to a pair composed of a program and a proof of its correctness, and so the program extraction procedure is immediate.