LETEO: Scalable anonymization of big data and its application to learning analytics

Giménez, Eduardo - Etcheverry, Lorena - Olmedo, Federico - Buil Aranda, Carlos - Toro, Matías - Pastorini, Marcos

Resumen:

Created in 2007, Plan Ceibal is an inclusion and equal opportunities plan with the aim of supporting Uruguayan educational policies with technology. Throughout these years, and within the framework of its tasks, Ceibal has an important amount of data related to the use of technology in education, necessary to manage the plan and fulfill the assigned legal tasks. However, the data does not they can be studied without accounting for the problem of de identifying the users of the Plan. To exploit this data, Ceibal has deployed an instance of the Hortonworks Data Platform (HDP), a open source platform for the storage and parallel processing of massive data (big data). HDP offers a wide range of functional components ranging from large file storage (HDFS) to distributed programming of machine learning algorithms (Apache Spark / MLlib). However, as of today there are no solutions for the de-identification of personal code data open and integrated into the Hortonworks ecosystem. On the one hand, the deidentification tools existing data have not been designed so that they can easily scale to large volumes of data, and they also do not offer easy integration mechanisms with HDFS. This forces you to export the data outside of the platform that stores them to be able to anonymize them, with the consequent risk of exposure of confidential information. On the other hand, the few integrated solutions in the Hortonworks ecosystem are owners and the cost of their licenses is very significant. The objective of this project is to promote the use of the enormous amount of educational and technological data that Ceibal possesses, lifting one of the greatest obstacles that exist for that, namely, the preservation of privacy and the protection of the personal data of the beneficiaries of the Plan. To this end, this project seeks to generate anonymization tools that extend the HDP platform. On In particular, it seeks to develop open source modules to integrate into said platform, which implement a set of programmed anonymization techniques and algorithms in a distributed manner using Apache Spark and that can be applied to data sets stored in HDFS files.


Detalles Bibliográficos
2021
Anonymization
Big data
Learning analytics
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/29755
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522945747124224
author Giménez, Eduardo
author2 Etcheverry, Lorena
Olmedo, Federico
Buil Aranda, Carlos
Toro, Matías
Pastorini, Marcos
author2_role author
author
author
author
author
author_facet Giménez, Eduardo
Etcheverry, Lorena
Olmedo, Federico
Buil Aranda, Carlos
Toro, Matías
Pastorini, Marcos
author_role author
bitstream.checksum.fl_str_mv eb896d5247a1553722a2b52daa77aa55
6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/29755/6/GEOBTP21.pdf
http://localhost:8080/xmlui/bitstream/20.500.12008/29755/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/29755/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/29755/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/29755/4/license_rdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Giménez Eduardo, Information and Communication Technologies for Verticals (ICT4V)
Etcheverry Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación.
dc.coverage.spatial.es.fl_str_mv Uruguay.
dc.creator.none.fl_str_mv Giménez, Eduardo
Etcheverry, Lorena
Olmedo, Federico
Buil Aranda, Carlos
Toro, Matías
Pastorini, Marcos
dc.date.accessioned.none.fl_str_mv 2021-10-06T16:45:59Z
dc.date.available.none.fl_str_mv 2021-10-06T16:45:59Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Created in 2007, Plan Ceibal is an inclusion and equal opportunities plan with the aim of supporting Uruguayan educational policies with technology. Throughout these years, and within the framework of its tasks, Ceibal has an important amount of data related to the use of technology in education, necessary to manage the plan and fulfill the assigned legal tasks. However, the data does not they can be studied without accounting for the problem of de identifying the users of the Plan. To exploit this data, Ceibal has deployed an instance of the Hortonworks Data Platform (HDP), a open source platform for the storage and parallel processing of massive data (big data). HDP offers a wide range of functional components ranging from large file storage (HDFS) to distributed programming of machine learning algorithms (Apache Spark / MLlib). However, as of today there are no solutions for the de-identification of personal code data open and integrated into the Hortonworks ecosystem. On the one hand, the deidentification tools existing data have not been designed so that they can easily scale to large volumes of data, and they also do not offer easy integration mechanisms with HDFS. This forces you to export the data outside of the platform that stores them to be able to anonymize them, with the consequent risk of exposure of confidential information. On the other hand, the few integrated solutions in the Hortonworks ecosystem are owners and the cost of their licenses is very significant. The objective of this project is to promote the use of the enormous amount of educational and technological data that Ceibal possesses, lifting one of the greatest obstacles that exist for that, namely, the preservation of privacy and the protection of the personal data of the beneficiaries of the Plan. To this end, this project seeks to generate anonymization tools that extend the HDP platform. On In particular, it seeks to develop open source modules to integrate into said platform, which implement a set of programmed anonymization techniques and algorithms in a distributed manner using Apache Spark and that can be applied to data sets stored in HDFS files.
dc.description.es.fl_txt_mv ANII Fondo sectorial de investigación con datos - 2018
dc.format.extent.es.fl_str_mv 16 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Giménez, E., Etcheverry, L., Olmedo, F. y otros. LETEO: Scalable anonymization of big data and its application to learning analytics [en línea]. Montevideo : Udelar. FI.,2021.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/29755
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Anonymization
Big data
Learning analytics
dc.title.none.fl_str_mv LETEO: Scalable anonymization of big data and its application to learning analytics
dc.type.es.fl_str_mv Reporte técnico
dc.type.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description ANII Fondo sectorial de investigación con datos - 2018
eu_rights_str_mv openAccess
format report
id COLIBRI_9d1339fa6915300f7ce7085633f4cf5a
identifier_str_mv Giménez, E., Etcheverry, L., Olmedo, F. y otros. LETEO: Scalable anonymization of big data and its application to learning analytics [en línea]. Montevideo : Udelar. FI.,2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/29755
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Giménez Eduardo, Information and Communication Technologies for Verticals (ICT4V)Etcheverry Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación.Uruguay.2021-10-06T16:45:59Z2021-10-06T16:45:59Z2021Giménez, E., Etcheverry, L., Olmedo, F. y otros. LETEO: Scalable anonymization of big data and its application to learning analytics [en línea]. Montevideo : Udelar. FI.,2021.https://hdl.handle.net/20.500.12008/29755ANII Fondo sectorial de investigación con datos - 2018Created in 2007, Plan Ceibal is an inclusion and equal opportunities plan with the aim of supporting Uruguayan educational policies with technology. Throughout these years, and within the framework of its tasks, Ceibal has an important amount of data related to the use of technology in education, necessary to manage the plan and fulfill the assigned legal tasks. However, the data does not they can be studied without accounting for the problem of de identifying the users of the Plan. To exploit this data, Ceibal has deployed an instance of the Hortonworks Data Platform (HDP), a open source platform for the storage and parallel processing of massive data (big data). HDP offers a wide range of functional components ranging from large file storage (HDFS) to distributed programming of machine learning algorithms (Apache Spark / MLlib). However, as of today there are no solutions for the de-identification of personal code data open and integrated into the Hortonworks ecosystem. On the one hand, the deidentification tools existing data have not been designed so that they can easily scale to large volumes of data, and they also do not offer easy integration mechanisms with HDFS. This forces you to export the data outside of the platform that stores them to be able to anonymize them, with the consequent risk of exposure of confidential information. On the other hand, the few integrated solutions in the Hortonworks ecosystem are owners and the cost of their licenses is very significant. The objective of this project is to promote the use of the enormous amount of educational and technological data that Ceibal possesses, lifting one of the greatest obstacles that exist for that, namely, the preservation of privacy and the protection of the personal data of the beneficiaries of the Plan. To this end, this project seeks to generate anonymization tools that extend the HDP platform. On In particular, it seeks to develop open source modules to integrate into said platform, which implement a set of programmed anonymization techniques and algorithms in a distributed manner using Apache Spark and that can be applied to data sets stored in HDFS files.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2021-10-06T12:24:44Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GE21.pdf: 799542 bytes, checksum: 73f76de24fe5c37e5b821de3ba9a6bd3 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-10-06T16:37:47Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GE21.pdf: 799542 bytes, checksum: 73f76de24fe5c37e5b821de3ba9a6bd3 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-10-06T16:45:59Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GE21.pdf: 799542 bytes, checksum: 73f76de24fe5c37e5b821de3ba9a6bd3 (MD5) Previous issue date: 202116 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)AnonymizationBig dataLearning analyticsLETEO: Scalable anonymization of big data and its application to learning analyticsReporte técnicoinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGiménez, EduardoEtcheverry, LorenaOlmedo, FedericoBuil Aranda, CarlosToro, MatíasPastorini, MarcosORIGINALGEOBTP21.pdfGEOBTP21.pdfapplication/pdf803862http://localhost:8080/xmlui/bitstream/20.500.12008/29755/6/GEOBTP21.pdfeb896d5247a1553722a2b52daa77aa55MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/29755/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/29755/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/29755/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/29755/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD5420.500.12008/297552021-10-14 10:30:33.443oai:colibri.udelar.edu.uy:20.500.12008/29755VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:34:03.406111COLIBRI - Universidad de la Repúblicafalse
spellingShingle LETEO: Scalable anonymization of big data and its application to learning analytics
Giménez, Eduardo
Anonymization
Big data
Learning analytics
status_str publishedVersion
title LETEO: Scalable anonymization of big data and its application to learning analytics
title_full LETEO: Scalable anonymization of big data and its application to learning analytics
title_fullStr LETEO: Scalable anonymization of big data and its application to learning analytics
title_full_unstemmed LETEO: Scalable anonymization of big data and its application to learning analytics
title_short LETEO: Scalable anonymization of big data and its application to learning analytics
title_sort LETEO: Scalable anonymization of big data and its application to learning analytics
topic Anonymization
Big data
Learning analytics
url https://hdl.handle.net/20.500.12008/29755