Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe
Supervisor(es): Pardo, Alberto - Viera, Marcos
Resumen:
Este documento presenta TensorSafe, una biblioteca desarrollada en Haskell que permite la definición y validación estructural de arquitecturas de redes neuronales. En la actualidad, el proceso de desarrollo de modelos de aprendizaje profundo ha sido ampliamente simplificado debido a la disponibilidad de herramientas en la industria. Sin embargo, la mayoría de estas herramientas no provee ningún control de consistencia estructural en tiempo de compilación, haciendo que los desarrolladores tengan que lidiar con errores inesperados en tiempo de ejecución. En particular, la validación estructural de redes neuronales profundas en tiempo de compilación es una tarea compleja, la cual involucra la validación matemática de todas las operaciones que el modelo de aprendizaje profundo va a realizar. Este chequeo estructural requiere un uso avanzado de los sistemas de tipos para la manipulación de tipos abstractos capaces de modelar la construcci ón de redes neuronales. El uso del paradigma de programación funcional y la programación a nivel de tipos que provee el lenguaje Haskell fueron de particular importancia al momento del desarrollo de Tensor-Safe. La evaluación experimental realizada muestra que usando TensorSafe es posible la construcción y validación de modelos de aprendizaje profundo bien conocidos, como lo son AlexNet o ResNet50.
2019 | |
Programación a nivel de tipos Aprendizaje profundo Computación confiable Programación funcional Haskell REDES NEURONALES |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/23002 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523224801509376 |
---|---|
author | Piñeyro, Leonardo |
author_facet | Piñeyro, Leonardo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 b7a1f0ecb0a08331e6e1cffe9455730a 9da0b6dfac957114c6a7714714b86306 0b79d5508bc83c124b3c2d81a8f0241c |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/23002/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/23002/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/23002/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/23002/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/23002/1/PI%C3%9119.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Piñeyro Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Pardo, Alberto Viera, Marcos |
dc.creator.none.fl_str_mv | Piñeyro, Leonardo |
dc.date.accessioned.none.fl_str_mv | 2020-02-03T18:15:55Z |
dc.date.available.none.fl_str_mv | 2020-02-03T18:15:55Z |
dc.date.issued.none.fl_str_mv | 2019 |
dc.description.abstract.none.fl_txt_mv | Este documento presenta TensorSafe, una biblioteca desarrollada en Haskell que permite la definición y validación estructural de arquitecturas de redes neuronales. En la actualidad, el proceso de desarrollo de modelos de aprendizaje profundo ha sido ampliamente simplificado debido a la disponibilidad de herramientas en la industria. Sin embargo, la mayoría de estas herramientas no provee ningún control de consistencia estructural en tiempo de compilación, haciendo que los desarrolladores tengan que lidiar con errores inesperados en tiempo de ejecución. En particular, la validación estructural de redes neuronales profundas en tiempo de compilación es una tarea compleja, la cual involucra la validación matemática de todas las operaciones que el modelo de aprendizaje profundo va a realizar. Este chequeo estructural requiere un uso avanzado de los sistemas de tipos para la manipulación de tipos abstractos capaces de modelar la construcci ón de redes neuronales. El uso del paradigma de programación funcional y la programación a nivel de tipos que provee el lenguaje Haskell fueron de particular importancia al momento del desarrollo de Tensor-Safe. La evaluación experimental realizada muestra que usando TensorSafe es posible la construcción y validación de modelos de aprendizaje profundo bien conocidos, como lo son AlexNet o ResNet50. |
dc.format.extent.es.fl_str_mv | 48 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Piñeyro, L. Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe [en línea]. Tesis de grado. Montevideo: Udelar. FI. INCO, 2019. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/23002 |
dc.language.iso.none.fl_str_mv | es spa |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Programación a nivel de tipos Aprendizaje profundo Computación confiable Programación funcional Haskell |
dc.subject.other.es.fl_str_mv | REDES NEURONALES |
dc.title.none.fl_str_mv | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Este documento presenta TensorSafe, una biblioteca desarrollada en Haskell que permite la definición y validación estructural de arquitecturas de redes neuronales. En la actualidad, el proceso de desarrollo de modelos de aprendizaje profundo ha sido ampliamente simplificado debido a la disponibilidad de herramientas en la industria. Sin embargo, la mayoría de estas herramientas no provee ningún control de consistencia estructural en tiempo de compilación, haciendo que los desarrolladores tengan que lidiar con errores inesperados en tiempo de ejecución. En particular, la validación estructural de redes neuronales profundas en tiempo de compilación es una tarea compleja, la cual involucra la validación matemática de todas las operaciones que el modelo de aprendizaje profundo va a realizar. Este chequeo estructural requiere un uso avanzado de los sistemas de tipos para la manipulación de tipos abstractos capaces de modelar la construcci ón de redes neuronales. El uso del paradigma de programación funcional y la programación a nivel de tipos que provee el lenguaje Haskell fueron de particular importancia al momento del desarrollo de Tensor-Safe. La evaluación experimental realizada muestra que usando TensorSafe es posible la construcción y validación de modelos de aprendizaje profundo bien conocidos, como lo son AlexNet o ResNet50. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_9c9584134cf20ede24cd330d80b3477d |
identifier_str_mv | Piñeyro, L. Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe [en línea]. Tesis de grado. Montevideo: Udelar. FI. INCO, 2019. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/23002 |
publishDate | 2019 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Piñeyro Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería2020-02-03T18:15:55Z2020-02-03T18:15:55Z2019Piñeyro, L. Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe [en línea]. Tesis de grado. Montevideo: Udelar. FI. INCO, 2019.https://hdl.handle.net/20.500.12008/23002Este documento presenta TensorSafe, una biblioteca desarrollada en Haskell que permite la definición y validación estructural de arquitecturas de redes neuronales. En la actualidad, el proceso de desarrollo de modelos de aprendizaje profundo ha sido ampliamente simplificado debido a la disponibilidad de herramientas en la industria. Sin embargo, la mayoría de estas herramientas no provee ningún control de consistencia estructural en tiempo de compilación, haciendo que los desarrolladores tengan que lidiar con errores inesperados en tiempo de ejecución. En particular, la validación estructural de redes neuronales profundas en tiempo de compilación es una tarea compleja, la cual involucra la validación matemática de todas las operaciones que el modelo de aprendizaje profundo va a realizar. Este chequeo estructural requiere un uso avanzado de los sistemas de tipos para la manipulación de tipos abstractos capaces de modelar la construcci ón de redes neuronales. El uso del paradigma de programación funcional y la programación a nivel de tipos que provee el lenguaje Haskell fueron de particular importancia al momento del desarrollo de Tensor-Safe. La evaluación experimental realizada muestra que usando TensorSafe es posible la construcción y validación de modelos de aprendizaje profundo bien conocidos, como lo son AlexNet o ResNet50.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2020-02-03T14:02:08Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) PIÑ19.pdf: 742009 bytes, checksum: 0b79d5508bc83c124b3c2d81a8f0241c (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-02-03T18:12:01Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) PIÑ19.pdf: 742009 bytes, checksum: 0b79d5508bc83c124b3c2d81a8f0241c (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2020-02-03T18:15:55Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) PIÑ19.pdf: 742009 bytes, checksum: 0b79d5508bc83c124b3c2d81a8f0241c (MD5) Previous issue date: 201948 p.application/pdfesspaLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Programación a nivel de tiposAprendizaje profundoComputación confiableProgramación funcionalHaskellREDES NEURONALESVerificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafeTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPiñeyro, LeonardoPardo, AlbertoViera, MarcosUniversidad de la República (Uruguay). Facultad de IngenieríaLicenciado en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/23002/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/23002/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838418http://localhost:8080/xmlui/bitstream/20.500.12008/23002/3/license_textb7a1f0ecb0a08331e6e1cffe9455730aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/23002/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALPIÑ19.pdfPIÑ19.pdfapplication/pdf742009http://localhost:8080/xmlui/bitstream/20.500.12008/23002/1/PI%C3%9119.pdf0b79d5508bc83c124b3c2d81a8f0241cMD5120.500.12008/230022024-04-12 14:06:40.492oai:colibri.udelar.edu.uy:20.500.12008/23002VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:18.541964COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe Piñeyro, Leonardo Programación a nivel de tipos Aprendizaje profundo Computación confiable Programación funcional Haskell REDES NEURONALES |
status_str | acceptedVersion |
title | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe |
title_full | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe |
title_fullStr | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe |
title_full_unstemmed | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe |
title_short | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe |
title_sort | Verificación de estructura de redes neuronales profundas en tiempo de compilación: Proyecto TensorSafe |
topic | Programación a nivel de tipos Aprendizaje profundo Computación confiable Programación funcional Haskell REDES NEURONALES |
url | https://hdl.handle.net/20.500.12008/23002 |