An algorithm to solve optimal stopping problems for onedimensional diffusions
Resumen:
Considering a real-valued diffusion, a real-valued reward function and a positive discount rate, we provide an algorithm to solve the optimal stopping problem consisting in finding the optimal expected discounted reward and the optimal stopping time at which it is attained. Our approach is based on Dynkin’s characterization of the value function. The combination of Riesz’s representation of α-excessive functions and the inversion formula gives the density of the representing measure, being only necessary to determine its support. This last task is accomplished through an algorithm. The proposed method always arrives to the solution, thus no verification is needed, giving, in particular, the shape of the stopping region. Generalizations to diffusions with atoms in the speed measure and to non smooth payoffs are analyzed
2022 | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41079 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Optimal stopping for strong Markov processes: explicit solutions and verification theorems for diffusions, multidimensional diffusions, and jump-processes
Autor(es):: Crocce, Fabián
Fecha de publicación:: (2012) -
Optimal Stopping for Strong Markov Processes : Explicit solutions and verification theorems for diffusions, multidimensional diffusions, and jump-processes.
Autor(es):: Crocce, Fabián
Fecha de publicación:: (2012) -
An algorithm to solve a city
Autor(es):: Mazza, Javier
Fecha de publicación:: (2015) -
Optimal stopping of oscillating Brownian motion
Autor(es):: Mordecki, Ernesto
Fecha de publicación:: (2019) -
GRASP/VND Optimization Algorithms for Hard Combinatorial Problems
Autor(es):: Stabile Suárez, Luis Alberto
Fecha de publicación:: (2019)