Stochastic models for cognitive radio networks

Rattaro, Claudina

Supervisor(es): Belzarena, Pablo - Bermolen, Paola

Resumen:

During the last decade we have seen an explosive development of wireless technologies. Consequently the demand for electromagnetic spectrum has been growing dramatically resulting in the spectrum scarcity problem. In spite of this, spectrum utilization measurements have shown that licensed bands are vastly underutilized while unlicensed bands are too crowded. In this context, Cognitive Radio emerges as an auspicious paradigm in order to solve those problems. Even more, this concept is envisaged as one of the main components of future wireless technologies, such as the fifth-generation of mobile networks. In this regard, this thesis is founded on cognitive radio networks. We start considering a paid spectrum sharing approach where secondary users (SUs) pay to primary ones for the spectrum utilization. In particular, the first part of the thesis bears on the design and analysis of an optimal SU admission control policy, i.e. that maximizes the long-run profit of the primary service provider. We model the optimal revenue problem as a Markov Decision Process and we use dynamic programming (and other techniques such as sample-path analysis) to characterize properties of the optimal admission control policy. We introduce different changes to one of the best known dynamic programming algorithms incorporating the knowledge of the characterization. In particular, those proposals accelerate the rate of convergence of the algorithm when is applied in the considered context. We complement the analysis of the paid spectrum sharing approach using fluid approximations. That is to say, we obtain a description of the asymptotic behavior of the Markov process as the solution of an ordinary differential equation system. By means of the fluid approximation of the problem, we propose a methodology to estimate the optimal admission control boundary of the maximization profit problem mentioned before. In addition, we use the deterministic model in order to propose some tools and criteria that can be used to improve the mean spectrum utilization with the commitment of providing to secondary users certain quality of service levels. In wireless networks, a cognitive user can take advantage of either the time, the frequency, or the space. In the first part of the thesis we have been concentrated on timefrequency holes, in the second part we address the complete problem incorporating the space variable. In particular, we first introduce a probabilistic model based on a stochastic geometry approach. We focus our study in two of the main performance metrics: medium access probability and coverage probability. Finally, in the last part of the thesis we propose a novel methodology based on configuration models for random graphs. With our proposal, we show that it is possible to calculate an analytic approximation of the medium access probability (both for PUs and, most importantly, SUs) in an arbitrary large heterogeneous random network. This performance metric gives an idea of the possibilities offered by cognitive radio to improve the spectrum utilization. The introduced robust method, as well as all the results of the thesis, are evaluated by several simulations for different network topologies, including real scenarios of primary network deployments. Keywords: Markov decision process, fluid limit, stochastic geometry, random graphs,dynamic spectrum assignment, cognitive radio


Detalles Bibliográficos
2018
Telecomunicaciones
Inglés
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/20201
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807522999183605760
author Rattaro, Claudina
author_facet Rattaro, Claudina
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
348e09553c3bab2c5d9f42f6fe73c62a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/20201/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/20201/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/20201/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/20201/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/20201/1/Rat18.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Belzarena, Pablo
Bermolen, Paola
dc.creator.none.fl_str_mv Rattaro, Claudina
dc.date.accessioned.none.fl_str_mv 2019-02-21T20:56:44Z
dc.date.available.none.fl_str_mv 2019-02-21T20:56:44Z
dc.date.issued.es.fl_str_mv 2018
dc.date.submitted.es.fl_str_mv 20190221
dc.description.abstract.none.fl_txt_mv During the last decade we have seen an explosive development of wireless technologies. Consequently the demand for electromagnetic spectrum has been growing dramatically resulting in the spectrum scarcity problem. In spite of this, spectrum utilization measurements have shown that licensed bands are vastly underutilized while unlicensed bands are too crowded. In this context, Cognitive Radio emerges as an auspicious paradigm in order to solve those problems. Even more, this concept is envisaged as one of the main components of future wireless technologies, such as the fifth-generation of mobile networks. In this regard, this thesis is founded on cognitive radio networks. We start considering a paid spectrum sharing approach where secondary users (SUs) pay to primary ones for the spectrum utilization. In particular, the first part of the thesis bears on the design and analysis of an optimal SU admission control policy, i.e. that maximizes the long-run profit of the primary service provider. We model the optimal revenue problem as a Markov Decision Process and we use dynamic programming (and other techniques such as sample-path analysis) to characterize properties of the optimal admission control policy. We introduce different changes to one of the best known dynamic programming algorithms incorporating the knowledge of the characterization. In particular, those proposals accelerate the rate of convergence of the algorithm when is applied in the considered context. We complement the analysis of the paid spectrum sharing approach using fluid approximations. That is to say, we obtain a description of the asymptotic behavior of the Markov process as the solution of an ordinary differential equation system. By means of the fluid approximation of the problem, we propose a methodology to estimate the optimal admission control boundary of the maximization profit problem mentioned before. In addition, we use the deterministic model in order to propose some tools and criteria that can be used to improve the mean spectrum utilization with the commitment of providing to secondary users certain quality of service levels. In wireless networks, a cognitive user can take advantage of either the time, the frequency, or the space. In the first part of the thesis we have been concentrated on timefrequency holes, in the second part we address the complete problem incorporating the space variable. In particular, we first introduce a probabilistic model based on a stochastic geometry approach. We focus our study in two of the main performance metrics: medium access probability and coverage probability. Finally, in the last part of the thesis we propose a novel methodology based on configuration models for random graphs. With our proposal, we show that it is possible to calculate an analytic approximation of the medium access probability (both for PUs and, most importantly, SUs) in an arbitrary large heterogeneous random network. This performance metric gives an idea of the possibilities offered by cognitive radio to improve the spectrum utilization. The introduced robust method, as well as all the results of the thesis, are evaluated by several simulations for different network topologies, including real scenarios of primary network deployments. Keywords: Markov decision process, fluid limit, stochastic geometry, random graphs,dynamic spectrum assignment, cognitive radio
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv RATTARO, C. "Stochastic models for cognitive radio networks". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/20201
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv UR. FING
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv Telecomunicaciones
dc.title.none.fl_str_mv Stochastic models for cognitive radio networks
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description During the last decade we have seen an explosive development of wireless technologies. Consequently the demand for electromagnetic spectrum has been growing dramatically resulting in the spectrum scarcity problem. In spite of this, spectrum utilization measurements have shown that licensed bands are vastly underutilized while unlicensed bands are too crowded. In this context, Cognitive Radio emerges as an auspicious paradigm in order to solve those problems. Even more, this concept is envisaged as one of the main components of future wireless technologies, such as the fifth-generation of mobile networks. In this regard, this thesis is founded on cognitive radio networks. We start considering a paid spectrum sharing approach where secondary users (SUs) pay to primary ones for the spectrum utilization. In particular, the first part of the thesis bears on the design and analysis of an optimal SU admission control policy, i.e. that maximizes the long-run profit of the primary service provider. We model the optimal revenue problem as a Markov Decision Process and we use dynamic programming (and other techniques such as sample-path analysis) to characterize properties of the optimal admission control policy. We introduce different changes to one of the best known dynamic programming algorithms incorporating the knowledge of the characterization. In particular, those proposals accelerate the rate of convergence of the algorithm when is applied in the considered context. We complement the analysis of the paid spectrum sharing approach using fluid approximations. That is to say, we obtain a description of the asymptotic behavior of the Markov process as the solution of an ordinary differential equation system. By means of the fluid approximation of the problem, we propose a methodology to estimate the optimal admission control boundary of the maximization profit problem mentioned before. In addition, we use the deterministic model in order to propose some tools and criteria that can be used to improve the mean spectrum utilization with the commitment of providing to secondary users certain quality of service levels. In wireless networks, a cognitive user can take advantage of either the time, the frequency, or the space. In the first part of the thesis we have been concentrated on timefrequency holes, in the second part we address the complete problem incorporating the space variable. In particular, we first introduce a probabilistic model based on a stochastic geometry approach. We focus our study in two of the main performance metrics: medium access probability and coverage probability. Finally, in the last part of the thesis we propose a novel methodology based on configuration models for random graphs. With our proposal, we show that it is possible to calculate an analytic approximation of the medium access probability (both for PUs and, most importantly, SUs) in an arbitrary large heterogeneous random network. This performance metric gives an idea of the possibilities offered by cognitive radio to improve the spectrum utilization. The introduced robust method, as well as all the results of the thesis, are evaluated by several simulations for different network topologies, including real scenarios of primary network deployments. Keywords: Markov decision process, fluid limit, stochastic geometry, random graphs,dynamic spectrum assignment, cognitive radio
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_9af5207d3a62bfbafd065f0e29c39b43
identifier_str_mv RATTARO, C. "Stochastic models for cognitive radio networks". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/20201
publishDate 2018
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling 2019-02-21T20:56:44Z2019-02-21T20:56:44Z201820190221RATTARO, C. "Stochastic models for cognitive radio networks". Tesis de doctorado, Universidad de la República (Uruguay). Facultad de Ingeniería, 2018.http://hdl.handle.net/20.500.12008/20201During the last decade we have seen an explosive development of wireless technologies. Consequently the demand for electromagnetic spectrum has been growing dramatically resulting in the spectrum scarcity problem. In spite of this, spectrum utilization measurements have shown that licensed bands are vastly underutilized while unlicensed bands are too crowded. In this context, Cognitive Radio emerges as an auspicious paradigm in order to solve those problems. Even more, this concept is envisaged as one of the main components of future wireless technologies, such as the fifth-generation of mobile networks. In this regard, this thesis is founded on cognitive radio networks. We start considering a paid spectrum sharing approach where secondary users (SUs) pay to primary ones for the spectrum utilization. In particular, the first part of the thesis bears on the design and analysis of an optimal SU admission control policy, i.e. that maximizes the long-run profit of the primary service provider. We model the optimal revenue problem as a Markov Decision Process and we use dynamic programming (and other techniques such as sample-path analysis) to characterize properties of the optimal admission control policy. We introduce different changes to one of the best known dynamic programming algorithms incorporating the knowledge of the characterization. In particular, those proposals accelerate the rate of convergence of the algorithm when is applied in the considered context. We complement the analysis of the paid spectrum sharing approach using fluid approximations. That is to say, we obtain a description of the asymptotic behavior of the Markov process as the solution of an ordinary differential equation system. By means of the fluid approximation of the problem, we propose a methodology to estimate the optimal admission control boundary of the maximization profit problem mentioned before. In addition, we use the deterministic model in order to propose some tools and criteria that can be used to improve the mean spectrum utilization with the commitment of providing to secondary users certain quality of service levels. In wireless networks, a cognitive user can take advantage of either the time, the frequency, or the space. In the first part of the thesis we have been concentrated on timefrequency holes, in the second part we address the complete problem incorporating the space variable. In particular, we first introduce a probabilistic model based on a stochastic geometry approach. We focus our study in two of the main performance metrics: medium access probability and coverage probability. Finally, in the last part of the thesis we propose a novel methodology based on configuration models for random graphs. With our proposal, we show that it is possible to calculate an analytic approximation of the medium access probability (both for PUs and, most importantly, SUs) in an arbitrary large heterogeneous random network. This performance metric gives an idea of the possibilities offered by cognitive radio to improve the spectrum utilization. The introduced robust method, as well as all the results of the thesis, are evaluated by several simulations for different network topologies, including real scenarios of primary network deployments. Keywords: Markov decision process, fluid limit, stochastic geometry, random graphs,dynamic spectrum assignment, cognitive radioMade available in DSpace on 2019-02-21T20:56:44Z (GMT). No. of bitstreams: 5 Rat18.pdf: 3590975 bytes, checksum: 348e09553c3bab2c5d9f42f6fe73c62a (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2018application/pdfenengUR. FINGLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)TelecomunicacionesStochastic models for cognitive radio networksTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRattaro, ClaudinaBelzarena, PabloBermolen, PaolaUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en Ingeniería EléctricaTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/20201/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/20201/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/20201/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/20201/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALRat18.pdfapplication/pdf3590975http://localhost:8080/xmlui/bitstream/20.500.12008/20201/1/Rat18.pdf348e09553c3bab2c5d9f42f6fe73c62aMD5120.500.12008/202012024-07-29 17:35:33.221oai:colibri.udelar.edu.uy:20.500.12008/20201VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:06.243198COLIBRI - Universidad de la Repúblicafalse
spellingShingle Stochastic models for cognitive radio networks
Rattaro, Claudina
Telecomunicaciones
status_str acceptedVersion
title Stochastic models for cognitive radio networks
title_full Stochastic models for cognitive radio networks
title_fullStr Stochastic models for cognitive radio networks
title_full_unstemmed Stochastic models for cognitive radio networks
title_short Stochastic models for cognitive radio networks
title_sort Stochastic models for cognitive radio networks
topic Telecomunicaciones
url http://hdl.handle.net/20.500.12008/20201