Static reliability and resilience in dynamic systems

Piccini Ferrín, Juan Eduardo

Supervisor(es): Robledo, Franco - Romero, Pablo

Resumen:

Two systems are modeled in this thesis. First, we consider a multi-component stochastic monotone binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation. A statistical approximation of the system reliability is provided for these systems, inspired in Monte Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was originally developed for delay sensitive applications over the Internet infrastructure. The computational complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation are offered, termed Weak graphs. Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed population) are discarded. Finally, we formalize a stochastic rocess that counts infected individuals, and further investigate node-immunization strategies, subject to a budget nstraint. A combinatorial optimization problem is here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.


Detalles Bibliográficos
2016
Stochastic Binary System
Recursive Variance Reduction Method
Diameter Constrained Reliability
Graph theory
Complexity theory
GRASP
SIR Model
Monte Carlo methods
Epidemic model
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/32192
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523176400289792
author Piccini Ferrín, Juan Eduardo
author_facet Piccini Ferrín, Juan Eduardo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
fba93e9f34f0f71ad7136dabe47af825
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/32192/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/32192/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/32192/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/32192/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/32192/1/Pic16.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Piccini Ferrín Juan Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Robledo, Franco
Romero, Pablo
dc.creator.none.fl_str_mv Piccini Ferrín, Juan Eduardo
dc.date.accessioned.none.fl_str_mv 2022-06-16T11:43:40Z
dc.date.available.none.fl_str_mv 2022-06-16T11:43:40Z
dc.date.issued.none.fl_str_mv 2016
dc.description.abstract.none.fl_txt_mv Two systems are modeled in this thesis. First, we consider a multi-component stochastic monotone binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation. A statistical approximation of the system reliability is provided for these systems, inspired in Monte Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was originally developed for delay sensitive applications over the Internet infrastructure. The computational complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation are offered, termed Weak graphs. Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed population) are discarded. Finally, we formalize a stochastic rocess that counts infected individuals, and further investigate node-immunization strategies, subject to a budget nstraint. A combinatorial optimization problem is here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.
dc.format.extent.es.fl_str_mv 86 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Piccini Ferrín, J. Static reliability and resilience in dynamic systems [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA. Área Informática, 2016.
dc.identifier.issn.none.fl_str_mv 1688-2776
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/32192
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Stochastic Binary System
Recursive Variance Reduction Method
Diameter Constrained Reliability
Graph theory
Complexity theory
GRASP
SIR Model
Monte Carlo methods
Epidemic model
dc.title.none.fl_str_mv Static reliability and resilience in dynamic systems
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Two systems are modeled in this thesis. First, we consider a multi-component stochastic monotone binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation. A statistical approximation of the system reliability is provided for these systems, inspired in Monte Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was originally developed for delay sensitive applications over the Internet infrastructure. The computational complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation are offered, termed Weak graphs. Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed population) are discarded. Finally, we formalize a stochastic rocess that counts infected individuals, and further investigate node-immunization strategies, subject to a budget nstraint. A combinatorial optimization problem is here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_9aa682a3ae2489dedaa1f40b98bbc9b4
identifier_str_mv Piccini Ferrín, J. Static reliability and resilience in dynamic systems [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA. Área Informática, 2016.
1688-2776
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/32192
publishDate 2016
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Piccini Ferrín Juan Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-06-16T11:43:40Z2022-06-16T11:43:40Z2016Piccini Ferrín, J. Static reliability and resilience in dynamic systems [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA. Área Informática, 2016.1688-2776https://hdl.handle.net/20.500.12008/32192Two systems are modeled in this thesis. First, we consider a multi-component stochastic monotone binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation. A statistical approximation of the system reliability is provided for these systems, inspired in Monte Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was originally developed for delay sensitive applications over the Internet infrastructure. The computational complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation are offered, termed Weak graphs. Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed population) are discarded. Finally, we formalize a stochastic rocess that counts infected individuals, and further investigate node-immunization strategies, subject to a budget nstraint. A combinatorial optimization problem is here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-06-13T15:35:51Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Pic16.pdf: 2559580 bytes, checksum: fba93e9f34f0f71ad7136dabe47af825 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-06-14T18:27:32Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Pic16.pdf: 2559580 bytes, checksum: fba93e9f34f0f71ad7136dabe47af825 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-06-16T11:43:40Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Pic16.pdf: 2559580 bytes, checksum: fba93e9f34f0f71ad7136dabe47af825 (MD5) Previous issue date: 201686 p.application/pdfenengUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Stochastic Binary SystemRecursive Variance Reduction MethodDiameter Constrained ReliabilityGraph theoryComplexity theoryGRASPSIR ModelMonte Carlo methodsEpidemic modelStatic reliability and resilience in dynamic systemsTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPiccini Ferrín, Juan EduardoRobledo, FrancoRomero, PabloUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/32192/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/32192/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/32192/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/32192/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALPic16.pdfPic16.pdfapplication/pdf2559580http://localhost:8080/xmlui/bitstream/20.500.12008/32192/1/Pic16.pdffba93e9f34f0f71ad7136dabe47af825MD5120.500.12008/321922022-06-17 09:13:51.9oai:colibri.udelar.edu.uy:20.500.12008/32192VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:08.305610COLIBRI - Universidad de la Repúblicafalse
spellingShingle Static reliability and resilience in dynamic systems
Piccini Ferrín, Juan Eduardo
Stochastic Binary System
Recursive Variance Reduction Method
Diameter Constrained Reliability
Graph theory
Complexity theory
GRASP
SIR Model
Monte Carlo methods
Epidemic model
status_str acceptedVersion
title Static reliability and resilience in dynamic systems
title_full Static reliability and resilience in dynamic systems
title_fullStr Static reliability and resilience in dynamic systems
title_full_unstemmed Static reliability and resilience in dynamic systems
title_short Static reliability and resilience in dynamic systems
title_sort Static reliability and resilience in dynamic systems
topic Stochastic Binary System
Recursive Variance Reduction Method
Diameter Constrained Reliability
Graph theory
Complexity theory
GRASP
SIR Model
Monte Carlo methods
Epidemic model
url https://hdl.handle.net/20.500.12008/32192