Static reliability and resilience in dynamic systems

Piccini Ferrín, Juan Eduardo

Supervisor(es): Robledo, Franco - Romero, Pablo

Resumen:

Two systems are modeled in this thesis. First, we consider a multi-component stochastic monotone binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation. A statistical approximation of the system reliability is provided for these systems, inspired in Monte Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was originally developed for delay sensitive applications over the Internet infrastructure. The computational complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation are offered, termed Weak graphs. Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed population) are discarded. Finally, we formalize a stochastic rocess that counts infected individuals, and further investigate node-immunization strategies, subject to a budget nstraint. A combinatorial optimization problem is here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.


Detalles Bibliográficos
2016
Stochastic Binary System
Recursive Variance Reduction Method
Diameter Constrained Reliability
Graph theory
Complexity theory
GRASP
SIR Model
Monte Carlo methods
Epidemic model
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/32192
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Resumen:
Sumario:Two systems are modeled in this thesis. First, we consider a multi-component stochastic monotone binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation. A statistical approximation of the system reliability is provided for these systems, inspired in Monte Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was originally developed for delay sensitive applications over the Internet infrastructure. The computational complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation are offered, termed Weak graphs. Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed population) are discarded. Finally, we formalize a stochastic rocess that counts infected individuals, and further investigate node-immunization strategies, subject to a budget nstraint. A combinatorial optimization problem is here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.