Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.

Fiori, Ignacio - Mujica, Mateo - Esteban, Mathías

Supervisor(es): Nesmachnow, Sergio

Resumen:

Este proyecto estudia el problema de la desagregación energética en hogares, que busca identificar que electrodomésticos se encuentran encendidos en una red eléctrica a partir de los datos de consumo agregado del hogar. Se estudian dos variantes del problema: una variante binaria, donde los electrodomésticos pueden encontrarse únicamente en dos estados, encendido o apagado, y una variante que considera múltiples niveles de consumo. Se utilizan métodos de aprendizaje automático y redes neuronales para abordar cada una de las variantes. Se implementan cuatro clasficadores: Naive Bayes, K Nearest Neighbours, Multi Layer Perceptron, Long Short Tert Memory. Los clasificadores implementados son evaluados utilizando el repositorio de datos UK-DALE. Dicho repositorio contiene información sobre consumo eléctrico de varios electrodomésticos en cinco hogares del Reino Unido en el período entre los años 2012 y 2017. Los resultados experimentales muestran que para la variante binaria, las redes neuronales LSTM son las más apropiadas para abordar el problema de caracterización. Las redes logran tasas de aciertos de cambios de estado de hasta un 75%, y valores de f1-score cercanos a 1. En contraposición, para la variante con múltiples estados de consumo, los resultados son netamente bajos. Finalmente, se introduce el problema de desagregación de consumo eléctrico a hogares no conocidos. Se prueba el desempeño de los clasificadores frente a conductas de consumo eléctrico no proporcionadas durante las etapas de entrenamiento.


Detalles Bibliográficos
2019
Desagregación eneregética
Aprendizaje automático
Inteligencia artificial
Redes neuronales
Consumo eléctrico
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/22908
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523224815140864
author Fiori, Ignacio
author2 Mujica, Mateo
Esteban, Mathías
author2_role author
author
author_facet Fiori, Ignacio
Mujica, Mateo
Esteban, Mathías
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
b7a1f0ecb0a08331e6e1cffe9455730a
9da0b6dfac957114c6a7714714b86306
f5df894a597e2ecac5a0f341d3620944
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/22908/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/22908/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/22908/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/22908/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/22908/1/FME19.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Fiori Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería
Mujica Mateo, Universidad de la República (Uruguay). Facultad de Ingeniería
Esteban Mathías, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Nesmachnow, Sergio
dc.creator.none.fl_str_mv Fiori, Ignacio
Mujica, Mateo
Esteban, Mathías
dc.date.accessioned.none.fl_str_mv 2019-12-30T17:17:14Z
dc.date.available.none.fl_str_mv 2019-12-30T17:17:14Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv Este proyecto estudia el problema de la desagregación energética en hogares, que busca identificar que electrodomésticos se encuentran encendidos en una red eléctrica a partir de los datos de consumo agregado del hogar. Se estudian dos variantes del problema: una variante binaria, donde los electrodomésticos pueden encontrarse únicamente en dos estados, encendido o apagado, y una variante que considera múltiples niveles de consumo. Se utilizan métodos de aprendizaje automático y redes neuronales para abordar cada una de las variantes. Se implementan cuatro clasficadores: Naive Bayes, K Nearest Neighbours, Multi Layer Perceptron, Long Short Tert Memory. Los clasificadores implementados son evaluados utilizando el repositorio de datos UK-DALE. Dicho repositorio contiene información sobre consumo eléctrico de varios electrodomésticos en cinco hogares del Reino Unido en el período entre los años 2012 y 2017. Los resultados experimentales muestran que para la variante binaria, las redes neuronales LSTM son las más apropiadas para abordar el problema de caracterización. Las redes logran tasas de aciertos de cambios de estado de hasta un 75%, y valores de f1-score cercanos a 1. En contraposición, para la variante con múltiples estados de consumo, los resultados son netamente bajos. Finalmente, se introduce el problema de desagregación de consumo eléctrico a hogares no conocidos. Se prueba el desempeño de los clasificadores frente a conductas de consumo eléctrico no proporcionadas durante las etapas de entrenamiento.
dc.format.extent.es.fl_str_mv 123 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Fiori, I., Mujica, M. y Esteban, M. Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2019.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/22908
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Desagregación eneregética
Aprendizaje automático
Inteligencia artificial
Redes neuronales
Consumo eléctrico
dc.title.none.fl_str_mv Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Este proyecto estudia el problema de la desagregación energética en hogares, que busca identificar que electrodomésticos se encuentran encendidos en una red eléctrica a partir de los datos de consumo agregado del hogar. Se estudian dos variantes del problema: una variante binaria, donde los electrodomésticos pueden encontrarse únicamente en dos estados, encendido o apagado, y una variante que considera múltiples niveles de consumo. Se utilizan métodos de aprendizaje automático y redes neuronales para abordar cada una de las variantes. Se implementan cuatro clasficadores: Naive Bayes, K Nearest Neighbours, Multi Layer Perceptron, Long Short Tert Memory. Los clasificadores implementados son evaluados utilizando el repositorio de datos UK-DALE. Dicho repositorio contiene información sobre consumo eléctrico de varios electrodomésticos en cinco hogares del Reino Unido en el período entre los años 2012 y 2017. Los resultados experimentales muestran que para la variante binaria, las redes neuronales LSTM son las más apropiadas para abordar el problema de caracterización. Las redes logran tasas de aciertos de cambios de estado de hasta un 75%, y valores de f1-score cercanos a 1. En contraposición, para la variante con múltiples estados de consumo, los resultados son netamente bajos. Finalmente, se introduce el problema de desagregación de consumo eléctrico a hogares no conocidos. Se prueba el desempeño de los clasificadores frente a conductas de consumo eléctrico no proporcionadas durante las etapas de entrenamiento.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_9a7804c24b52ab3c516dad70936008b2
identifier_str_mv Fiori, I., Mujica, M. y Esteban, M. Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2019.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/22908
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Fiori Ignacio, Universidad de la República (Uruguay). Facultad de IngenieríaMujica Mateo, Universidad de la República (Uruguay). Facultad de IngenieríaEsteban Mathías, Universidad de la República (Uruguay). Facultad de Ingeniería2019-12-30T17:17:14Z2019-12-30T17:17:14Z2019Fiori, I., Mujica, M. y Esteban, M. Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2019.https://hdl.handle.net/20.500.12008/22908Este proyecto estudia el problema de la desagregación energética en hogares, que busca identificar que electrodomésticos se encuentran encendidos en una red eléctrica a partir de los datos de consumo agregado del hogar. Se estudian dos variantes del problema: una variante binaria, donde los electrodomésticos pueden encontrarse únicamente en dos estados, encendido o apagado, y una variante que considera múltiples niveles de consumo. Se utilizan métodos de aprendizaje automático y redes neuronales para abordar cada una de las variantes. Se implementan cuatro clasficadores: Naive Bayes, K Nearest Neighbours, Multi Layer Perceptron, Long Short Tert Memory. Los clasificadores implementados son evaluados utilizando el repositorio de datos UK-DALE. Dicho repositorio contiene información sobre consumo eléctrico de varios electrodomésticos en cinco hogares del Reino Unido en el período entre los años 2012 y 2017. Los resultados experimentales muestran que para la variante binaria, las redes neuronales LSTM son las más apropiadas para abordar el problema de caracterización. Las redes logran tasas de aciertos de cambios de estado de hasta un 75%, y valores de f1-score cercanos a 1. En contraposición, para la variante con múltiples estados de consumo, los resultados son netamente bajos. Finalmente, se introduce el problema de desagregación de consumo eléctrico a hogares no conocidos. Se prueba el desempeño de los clasificadores frente a conductas de consumo eléctrico no proporcionadas durante las etapas de entrenamiento.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2019-12-30T15:34:20Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) FME19.pdf: 764020 bytes, checksum: f5df894a597e2ecac5a0f341d3620944 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2019-12-30T17:00:00Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) FME19.pdf: 764020 bytes, checksum: f5df894a597e2ecac5a0f341d3620944 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2019-12-30T17:17:14Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) FME19.pdf: 764020 bytes, checksum: f5df894a597e2ecac5a0f341d3620944 (MD5) Previous issue date: 2019123 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Desagregación eneregéticaAprendizaje automáticoInteligencia artificialRedes neuronalesConsumo eléctricoAprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFiori, IgnacioMujica, MateoEsteban, MathíasNesmachnow, SergioUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/22908/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/22908/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838418http://localhost:8080/xmlui/bitstream/20.500.12008/22908/3/license_textb7a1f0ecb0a08331e6e1cffe9455730aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/22908/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALFME19.pdfFME19.pdfapplication/pdf764020http://localhost:8080/xmlui/bitstream/20.500.12008/22908/1/FME19.pdff5df894a597e2ecac5a0f341d3620944MD5120.500.12008/229082024-04-12 14:06:40.484oai:colibri.udelar.edu.uy:20.500.12008/22908VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:18.607145COLIBRI - Universidad de la Repúblicafalse
spellingShingle Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
Fiori, Ignacio
Desagregación eneregética
Aprendizaje automático
Inteligencia artificial
Redes neuronales
Consumo eléctrico
status_str acceptedVersion
title Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
title_full Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
title_fullStr Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
title_full_unstemmed Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
title_short Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
title_sort Aprendizaje e inteligencia computacional para la caracterización de consumo eléctrico en hogares.
topic Desagregación eneregética
Aprendizaje automático
Inteligencia artificial
Redes neuronales
Consumo eléctrico
url https://hdl.handle.net/20.500.12008/22908