Ataques adversarios en sistemas de reconocimiento visual

Irigaray, Diego - Serena, Camila

Supervisor(es): Delbracio, Mauricio - Lezama, José - Moncecchi, Guillermo

Resumen:

En la actualidad, las redes neuronales alcanzan el estado del arte en la mayoría de tareas que emplean técnicas de aprendizaje automático, siendo cada vez más los problemas del mundo real en los cuales se hace uso de este tipo de modelos. Sin embargo, se ha demostrado recientemente que dichas redes son vulnerables a los denominados ejemplos adversarios: datos de entrada que tras ser levemente modificados logran engañar a las redes haciéndolas devolver resultados incorrectos. En este trabajo realizamos un estudio sobre el fenómeno de los ejemplos adversarios, centrándonos para ello en los sistemas de visión artificial. Estudiamos cómo se obtienen dichos ejemplos, qué características presentan y por qué existen, así como algunas de las principales propuestas que buscan mitigar esta vulnerabilidad. Adicionalmente implementamos un framework orientado al desarrollo y evaluación de algoritmos tanto de ataque como de defensa contra ejemplos adversarios, el cual utilizamos para realizar distintos experimentos sobre algunos de los métodos más relevantes propuestos hasta el momento.


Detalles Bibliográficos
2019
Ataques adversarios
Ejemplos adversarios
Redes neuronales
Visión artificial
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/22867
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523224729157632
author Irigaray, Diego
author2 Serena, Camila
author2_role author
author_facet Irigaray, Diego
Serena, Camila
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
b7a1f0ecb0a08331e6e1cffe9455730a
9da0b6dfac957114c6a7714714b86306
efc35865fae7be0ae70fa7f80fa898a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/22867/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/22867/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/22867/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/22867/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/22867/1/DLM19.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Irigaray Diego, Universidad de la República (Uruguay). Facultad de Ingeniería
Serena Camila, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Delbracio, Mauricio
Lezama, José
Moncecchi, Guillermo
dc.creator.none.fl_str_mv Irigaray, Diego
Serena, Camila
dc.date.accessioned.none.fl_str_mv 2019-12-26T18:22:11Z
dc.date.available.none.fl_str_mv 2019-12-26T18:22:11Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv En la actualidad, las redes neuronales alcanzan el estado del arte en la mayoría de tareas que emplean técnicas de aprendizaje automático, siendo cada vez más los problemas del mundo real en los cuales se hace uso de este tipo de modelos. Sin embargo, se ha demostrado recientemente que dichas redes son vulnerables a los denominados ejemplos adversarios: datos de entrada que tras ser levemente modificados logran engañar a las redes haciéndolas devolver resultados incorrectos. En este trabajo realizamos un estudio sobre el fenómeno de los ejemplos adversarios, centrándonos para ello en los sistemas de visión artificial. Estudiamos cómo se obtienen dichos ejemplos, qué características presentan y por qué existen, así como algunas de las principales propuestas que buscan mitigar esta vulnerabilidad. Adicionalmente implementamos un framework orientado al desarrollo y evaluación de algoritmos tanto de ataque como de defensa contra ejemplos adversarios, el cual utilizamos para realizar distintos experimentos sobre algunos de los métodos más relevantes propuestos hasta el momento.
dc.format.extent.es.fl_str_mv 85 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Irigaray, D. y Serena, C. Ataques adversarios en sistemas de reconocimiento visual [en línea]. Tesis de grado. Montevideo: Udelar. FI. INCO, 2019.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/22867
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Ataques adversarios
Ejemplos adversarios
Redes neuronales
Visión artificial
dc.title.none.fl_str_mv Ataques adversarios en sistemas de reconocimiento visual
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description En la actualidad, las redes neuronales alcanzan el estado del arte en la mayoría de tareas que emplean técnicas de aprendizaje automático, siendo cada vez más los problemas del mundo real en los cuales se hace uso de este tipo de modelos. Sin embargo, se ha demostrado recientemente que dichas redes son vulnerables a los denominados ejemplos adversarios: datos de entrada que tras ser levemente modificados logran engañar a las redes haciéndolas devolver resultados incorrectos. En este trabajo realizamos un estudio sobre el fenómeno de los ejemplos adversarios, centrándonos para ello en los sistemas de visión artificial. Estudiamos cómo se obtienen dichos ejemplos, qué características presentan y por qué existen, así como algunas de las principales propuestas que buscan mitigar esta vulnerabilidad. Adicionalmente implementamos un framework orientado al desarrollo y evaluación de algoritmos tanto de ataque como de defensa contra ejemplos adversarios, el cual utilizamos para realizar distintos experimentos sobre algunos de los métodos más relevantes propuestos hasta el momento.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_973a6bb68464b8bc2293b83247f2087f
identifier_str_mv Irigaray, D. y Serena, C. Ataques adversarios en sistemas de reconocimiento visual [en línea]. Tesis de grado. Montevideo: Udelar. FI. INCO, 2019.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/22867
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Irigaray Diego, Universidad de la República (Uruguay). Facultad de IngenieríaSerena Camila, Universidad de la República (Uruguay). Facultad de Ingeniería2019-12-26T18:22:11Z2019-12-26T18:22:11Z2019Irigaray, D. y Serena, C. Ataques adversarios en sistemas de reconocimiento visual [en línea]. Tesis de grado. Montevideo: Udelar. FI. INCO, 2019.https://hdl.handle.net/20.500.12008/22867En la actualidad, las redes neuronales alcanzan el estado del arte en la mayoría de tareas que emplean técnicas de aprendizaje automático, siendo cada vez más los problemas del mundo real en los cuales se hace uso de este tipo de modelos. Sin embargo, se ha demostrado recientemente que dichas redes son vulnerables a los denominados ejemplos adversarios: datos de entrada que tras ser levemente modificados logran engañar a las redes haciéndolas devolver resultados incorrectos. En este trabajo realizamos un estudio sobre el fenómeno de los ejemplos adversarios, centrándonos para ello en los sistemas de visión artificial. Estudiamos cómo se obtienen dichos ejemplos, qué características presentan y por qué existen, así como algunas de las principales propuestas que buscan mitigar esta vulnerabilidad. Adicionalmente implementamos un framework orientado al desarrollo y evaluación de algoritmos tanto de ataque como de defensa contra ejemplos adversarios, el cual utilizamos para realizar distintos experimentos sobre algunos de los métodos más relevantes propuestos hasta el momento.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2019-12-19T14:13:35Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) DLM19.pdf: 8470999 bytes, checksum: efc35865fae7be0ae70fa7f80fa898a6 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2019-12-26T18:14:42Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) DLM19.pdf: 8470999 bytes, checksum: efc35865fae7be0ae70fa7f80fa898a6 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2019-12-26T18:22:11Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) DLM19.pdf: 8470999 bytes, checksum: efc35865fae7be0ae70fa7f80fa898a6 (MD5) Previous issue date: 201985 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Ataques adversariosEjemplos adversariosRedes neuronalesVisión artificialAtaques adversarios en sistemas de reconocimiento visualTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaIrigaray, DiegoSerena, CamilaDelbracio, MauricioLezama, JoséMoncecchi, GuillermoUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/22867/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/22867/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838418http://localhost:8080/xmlui/bitstream/20.500.12008/22867/3/license_textb7a1f0ecb0a08331e6e1cffe9455730aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/22867/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALDLM19.pdfDLM19.pdfapplication/pdf8470999http://localhost:8080/xmlui/bitstream/20.500.12008/22867/1/DLM19.pdfefc35865fae7be0ae70fa7f80fa898a6MD5120.500.12008/228672024-04-12 14:06:40.445oai:colibri.udelar.edu.uy:20.500.12008/22867VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:18.314585COLIBRI - Universidad de la Repúblicafalse
spellingShingle Ataques adversarios en sistemas de reconocimiento visual
Irigaray, Diego
Ataques adversarios
Ejemplos adversarios
Redes neuronales
Visión artificial
status_str acceptedVersion
title Ataques adversarios en sistemas de reconocimiento visual
title_full Ataques adversarios en sistemas de reconocimiento visual
title_fullStr Ataques adversarios en sistemas de reconocimiento visual
title_full_unstemmed Ataques adversarios en sistemas de reconocimiento visual
title_short Ataques adversarios en sistemas de reconocimiento visual
title_sort Ataques adversarios en sistemas de reconocimiento visual
topic Ataques adversarios
Ejemplos adversarios
Redes neuronales
Visión artificial
url https://hdl.handle.net/20.500.12008/22867